Seo, Il-Won;Yun, Myeong-Su;Jo, Tae-Hun;Kim, Dong-Hae;Jo, Lee-Hyeon;Son, Chan-Hui;An, Jeong-Ho;Lee, Jeong-Gyun;Gwon, Gi-Cheong
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.679-679
/
2013
태양전지는 계속되는 유가상승과 무소음 무공해의 녹색에너지원이라는 점에서 각광받고 있다. 더욱이 발전단가가 높기 때문에 특히 저가의 다결정 실리콘 태양전지의 연구가 활발히 진행되고 있다. 태양전지의 texturing 공정은 광 포획 효과를 극대화 시킨다. 이에 따라 웨이퍼 표면에 텍스쳐를 형성하여, 광학적 손실을 줄이는데, 일반적으로 alkaline etching (WET) 공정과 reactive ion etching (RIE) 공정이 사용된다. 본 연구에서는 RIE, WET 공정을 사용하여 만든 texturing 구조의 태양전지를 모듈 공정 진행 전 특성평가를 한 후 다시 모듈 공정 후 특성평가를 진행하였다. 특성평가는 태양전지의 전류-전압 곡선을 통해 개방전압, 단락전류, 곡선인자 을 측정하고, 파장에 따른 양자효율 및 반사율을 측정하였다. 또한 태양전지의 전기에너지를 가하여 생성되는 전계발광 현상과 NIR camera를 이용하여 Grain의 Dark Area 및 Micro crack을 검출하였다. 이와 같은 모듈 공정 전/후 특성을 측정하고, 이를 비교 분석하여 BIPV 적용 시 태양전지의 동작특성을 확인하였다.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.461.1-461.1
/
2014
본 연구진에서는 기존에 Ag2S 양자점을 흡광층으로 활용하여 양자점 감응형 태양전지(QDSC)를 제작, 그 성능과 특징을 분석하여 발표한 바 있다. 기존 연구에서 제작된 Ag2S QDSC는 11 mA/cm2의 비교적 높은 광전류와 260 mV의 비교적 낮은 전압으로 인해 1.2%의 광전환효율 성능을 나타내는 것으로 보고되었다. 추후 연구로 진행된 본 결과에서는, 기존에 Single absorber로 사용된 Ag2S의 한계를 보완하기 위해 CdS를 도입하여 co-sensitization을 활용하였다. CdS는 약 2.3 eV의 밴드갭 에너지를 갖는 물질로, 1.1 eV의 밴드갭을 갖는 Ag2S에 비해 흡광 영역은 좁지만 그만큼 전자-정공 재결합을 억제할 수 있는 장점을 가지고 있다. 또한, 전도층으로 사용한 n-type 물질인 ZnO 나노선과의 밴드구조가 매우 적합하게 조화되어, ZnO/CdS/Ag2S 순서로 이종구조를 접합시켰을 때 세 물질의 Conduction band level과 Valence band level이 순차적으로 연결되는 cascade-shaped 밴드구조를 이루게 된다. 빛을 받아 Ag2S와 CdS에서 생성된 전자는 이 cascade 모양의 conduction band를 따라 순차적으로 ZnO로 잘 전달되게 되어, 효율 향상에 큰 도움을 주었다. 이런 장점들로 인해, CdS-Ag2S co-sensitized QDSC는 Ag2S QDSC에 비해 2배나 향상된 효율인 2.4%를 기록하였으며, 이는 IPCE spectrum 측정 등으로 근거가 뒷받침되었다.
Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. Here, we study on the coating condition of ZnS passivation layers on the photoanodes in QD-sensitized solar cells (QDSCs). The ZnS passivation layers are coated by successive ionic layer adsorption and reaction method, and as the cation precursor, zinc acetate and zinc nitrate are empolyed. Due to the higher pH of cation precursor solution, the ZnS loading is improved when the zinc acetate is used, compared to the zinc nitrate. This improved loading of ZnS leads to the reduced electron recombination at the surface of photoanodes and the enhaced conversion efficiency of QDSCs from 6.07% to 7.45%.
Over the last two decades, quantum dot (QD) solar cells have attracted much attention due to the unique properties of QDs, including band gap tunability, slow hot electron cooling, and multiple exiton generation effect. However, most of the QDs employed in photovoltaic devices contain toxic heavy-metals such as cadmium or lead, which may limit the commercial application. Therefore, recently, heavy-metal-free QDs such as Cu-In-S or Cu-In-Se have been developed for application in solar cells. Here, we review the research trends in heavy-metal-free QD solar cells, mainly focusing on Cu-In-Se QD-sensitized solar cells (QDSC).
Kim, Shin-Ho;Park, Myoung-Guk;Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Yang-Do
한국신재생에너지학회:학술대회논문집
/
2007.11a
/
pp.318-321
/
2007
CdSe nanoparticles were prepared by chemical solution methods using $CdCl_2{\cdot}4H_2O$ (or $Cd(NO_3)_ 2{\cdot}4H_2O$) and $Na_2SeSO_3$. The characteristics of CdSe nanoparticles were controlled by the react ion time, reaction temperature and reaction method as well as the surfactants. Cetyltrimethyl ammonium bromide(CTAB) was used as a capping agent to control the chemical reactions in aqueous solution. Polyvinylalcohol(PVA) was used as a templet in sono-chemical method. CdSe nanoparticles synthesized in aqueous solution showed homogeneous size distribution with relatively stable surface. CdSe nanoparticles synthesized in non-aqueous solution containing diethanolamine(DEA) showed the structure transformation from cubic to hexagonal as the reduction temperature increased from 80 to $160^{\circ}C$. Core shell CdSe was synthesized by sono-chemical method. Characteristics of CdSe nanoparticles were analyzed using transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), UV-Vis absorption spectra, fourier transform infrared spectroscopy(FT-IR) and photoluminescence spectra spectroscopy(PL). This paper presents simple routes to prepare CdSe nanoparticles for solar cell applications.
CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.135.2-135.2
/
2014
Photon conversion technology for thin film solar cells is reviewed. The high-energy photons which are hardly absorbed in solar cells can be transformed the low energy photon by the photon conversion process such as down conversion or down shift, which can improve the solar cell efficiency over the material limit. CdSe-based quantum dot materials commonly used in LED can be used as the photon conversion layer for Si thin film solar cells. The photon conversion structure of CdSe-based quantum dot for Si thin film solar cells will be presented and the pros and cons for the Si thin film solar cells integrated with the photon conversion layers will be discussed.
Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned $TiO_2$ nanotube (NT) electrodes. The highly uniform $TiO_2$ NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of $TiO_2$ NT electrodes.
Journal of the Korean institute of surface engineering
/
v.52
no.1
/
pp.1-5
/
2019
Anodic oxidized $TiO_2$ nanotube arrays are promising materials for application in photoelectrochemical solar cells as the photoanode, because of their attractive properties including slow electron recombination rate, superior light scattering, and smooth electrolyte diffusion. However, because of the opacity of these nanotube electrodes, the back-side illumination is inevitable for the application in solar cells. Therefore, for the fabrication of solar cells with the anodic oxidized nanotube electrodes, it is required to develop efficient and transparent counter electrodes. Here, we demonstrate quantum dot-sensitized solar cells (QDSCs) based on the nanotube photoanode and transparent counter electrodes. The transparent counter electrodes based on Pt electrocatalysts were prepared by a simple thermal decomposition methods. The photovoltaic performances of QDSCs with nanotube photoanode were tested and optimized depending on the concentration of Pt precursor solutions for the preparation of counter electrodes.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.210.1-210.1
/
2013
ZnO는 태양전지의 투명전극 및 윈도우 물질로 그 동안 광범위하게 사용되어 왔다. 하지만 태양광의 효율 증가를 위하여서는 가시광 영역뿐만 아니라 자외선 및 적외선 영역을 이용할 필요가 있다. 또한 금속 산화물 반도체 나노 입자는 크기를 조절하여 흡수하는 태양광의 파장 영역을 조절할 수 있고 이를 이용하여 이종구조를 사지는 고효율의 태양전지를 구현할 수 있다. 본 연구에서는 3.4 eV의 에너지 밴드갭을 가지는 ZnO박막내에 밴드갭을 조절 할 수 있는 금속 산화물 나노입자를 삽입하여 광학적, 전기적 특성을 연구하였다. ZnO 박막을 증착하기 전 유리 및 사파이어 기판에 스퍼터를 사용하여 Pt금속전극을 형성한 이후, ZnO 박막을 $1{\times}10^{-10}$ Torr의 기본 진공도를 유지하는 초고진공 스퍼터를 사용하여 100 nm 두께로 증착 하였다. 금속 산화물 나노 입자를 제작 하기 위하여, ZnO 박막에 열증착 장비(thermal evaporator)를 사용하여 In 나노 입자를 10 nm 이하의 크기로 제작 하였다. 그 상부에 초고진공 스퍼터 와 열증착 장비를 사용하여 ZnO 박막 및 In 나노 입자를 순차적으로 증착하여 수백 nm 두께의 ZnO 박막을 제작한다. ZnO 박막 내부에 형성된 In 양자점은 ZnO 증착공정 중에 산화되어 $In_2O_3$ 의 산화물 나노 입자로 형성되며, 내부의 구조는 투과전자 현미경을 사용하여 확인 하였다. 제작된 금속 산화물 나노입자가 포함된 ZnO 박막의 광학적 특성을 photoluminescence, UV-Vis spectroscopy, ellipsometry를 통하여 확인 하였으며, solar simulator와 전류-전압 특정 장비를 사용하여 전기적 특성을 분석 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.