• 제목/요약/키워드: 양자점 감응형 태양전지

검색결과 12건 처리시간 0.035초

PbS as a sensitizer for Quantum Dot-sensitized Solar Cell

  • 김우석;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.379-379
    • /
    • 2011
  • 본 연구에서는 황화납(PbS)을 감응 물질로 하는 양자점 감응형 태양전지를 제작하고 효율을 측정해보았다. 기판에 진공증착을 통해 seed layer를 형성하고 수열합성법으로 산화아연(ZnO) 나노선 어레이를 기른 후 SILAR(Successive ionic layer adsorption and reaction)법으로 PbS 양자점을 합성하였고, 농도와 cycle에 따른 특성의 변화를 주사전자현미경(SEM), X-선 회절, UV-visible spectrometer를 통해 확인하였다. SILAR법을 통해 PbS가 ZnO 나노선 위에 film 형태로 균일하게 성장한 것을 확인할 수 있었고, 이렇게 합성한 물질을 직접 태양전지로 제작하여 그 효율을 측정하였다. 또한 co-sensitizer 물질로 CdS를 합성하여 두 물질의 감응 물질로서의 성능을 확인하였다. PbS는 비교적 작은 밴드갭을 가지며 양자 제한 효과가 커 밴드갭 조절이 용이하며 여러 종류의 태양전지에서 이용되고 있다. 이러한 PbS를 감응 물질로 하는 양자점 감응형 태양전지 제작을 통해 태양전지에의 적용 가능성을 살펴보고 그러기 위해 필요한 부분들을 모색해보았다.

  • PDF

Development of CdSe/CdS Quantum Dot Co-sensitized ZnO Nanowire Solar Cell

  • 설민수;김희진;김우석;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.369-369
    • /
    • 2011
  • 양자점 감응형 태양전지는 가시광 영역을 흡수, 이용할 수 있는 광감응 물질로 무기물 양자점을 사용하며, 이 경우 나노미터 크기의 무기물 양자점으로 인한 양자제한 효과 (quantum confinement effect)에 의해 양자점의 사이즈 조절 만으로 밴드갭을 조절할 수 있어 광학적 특성 조절이 용이하며, 하나의 광자를 흡수하여 두개 이상의 전자-정공쌍을 만들 수 있는 (multiple exciton generation) 가능성이 있어 기존 태양전지가 가지는 이론적 한계효율(Shockley-Queisser limit)을 뛰어넘을 수 있다. 본 연구에서는 양자점 및 염료 감응형 태양전지분야에서 가장 많이 사용되고 있는 TiO2 다공성 필름이 아닌, ZnO 나노선 구조를 이용하여 양자점 감응형 태양전지를 제작하였다. ZnO의 경우 TiO2보다 높은 전자이동도를 가지며, 나노선 구조가 바닥전극까지 수직 연결된 1차원의 전자전달경로를 제공하여 결과적으로 광전자 포집에 유리하다. 또한, CdS, CdSe 양자점을 동시에 사용하여 광흡수 범위를 가시광 전 영역으로 확장하였으며, 계단형 밴드구조를 통해 광전자-정공 분리 및 포집을 용이하게 하였다. 더 나아가 전해질의 조성, 나노선의 길이 등 다양한 부분을 조절하면서 각 변수가 소자의 효율에 미치는 영향을 관찰하였다.

  • PDF

Quantum dot sensitized ZnO nanowire array for solar cell application

  • 설민수;김희진;김우석;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.384-384
    • /
    • 2011
  • 양자점 감응형 태양전지는 염료감응형 태양전지와 비슷한 구조를 가지지만, 유기물 염료를 대신하여 무기물 양자점을 사용함으로서 기존 유기물 염료가 가지는 한계점을 극복할 수 있다. 양자점을 광감응 염료로 사용하는 경우 양자제한효과(quantum confinement effect)에 의해 양자점의 사이즈조절만으로 밴드갭을 조절할 수 있어 광학적 특성 조절이 용이하며, 유기물 염료보다 광흡수 능력도 뛰어나다. 더불어, 하나의 광자를 흡수하여 두개 이상의 전자-정공쌍을 만들 수 있는(multiple exciton generation) 가능성이 있어 기존 태양전지가 가지는 이론적 한계효율(Shockley-Queisser limit)을 뛰어넘을 수 있다. 본 연구에서는 고효율의 양자점 감응형 태양전지 개발을 위해, ZnO 나노선 구조에 CdS, CdSe 양자점을 증착한 CdSe/CdS/ZnO 나노선 헤테로구조를 수열합성법으로 합성하였다. 증착한 CdSe/CdS 양자점이 태양광의 가시광 전 영역을 흡수하여 전자-정공을 생성하며, 세 물질 간의 밴드구조를 통해 양자점에서 생성된 전자가 ZnO 나노선으로 포집되고, 바닥전극으로 직접연결이 되어있는 1차원의 나노선 구조를 통해 전자를 효율적으로 운반할 수 있다.

  • PDF

Ag2S를 이용한 친환경 양자점 감응형 태양전지 개발

  • 황인성;설민수;김희진;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.671-671
    • /
    • 2013
  • 실리콘 태양전지와 박막형 태양전지의 뒤를 이어, 제3세대로 분류되는 양자점 감응형 태양전지(QDSC)에 대한 연구가 활발히 진행되고 있다. 이 태양전지의 TCO로는 주로 ZnO, TiO2가 대부분 사용되고 있으며, 양자점 물질로는 CdS, CdSe, CdTe, PbS, PbSe 등의 카드뮴 및 납을 주 성분으로 하는 물질들에 대한 연구만 중점적으로 이루어지고 있는 실정이다. 이런 물질들은 현재까지 알려진 한도 내에서는 QDSC 효율 중 가장 좋은 효율을 나타내고는 있으나 이런 타입의 QDSC가 상용화된다면 환경에 노출되었을 때에 미치는 악영향이 매우 큰 중금속 물질들로 이루어져 있어, 이를 극복할 수 있는 친환경 성분의 물질에 대한 연구 또한 필요한 시점이다. 따라서 본 연구에서는 CdS를 대체할 수 있는 물질로 Ag2S를 선정, 이에 대한 연구를 진행하였다. Ag2S는 밴드갭이 1.1eV의 물질로, CdS의 2.3 eV와 비교해 상당히 작은 밴드갭을 가져 월등히 넓은 영역에서 빛을 흡수할 수 있다는 장점을 가지고 있으며, 동시에 이로 인한 전자-정공 재결합이 빨라 태양전지로 제작시에 Voc가 낮게 형성된다는 단점도 가지고 있다. 태양전지에 사용된 TCO물질은 ZnO 나노선을 사용했으며, 본 연구실에서 기존에 개발한 수열합성법을 통해 제작하였다. 이를 활용하여 최종적으로 제작한 태양전지의 효율은 CdS/ZnO QDSC가 1.2%, Ag2S/ZnO QDSC가 1.2%로 동일한 성능을 나타냈으며, CdS를 대체할 물질로 Ag2S의 가능성을 보여준 결과라 할 수 있다.

  • PDF

CBD법을 이용한 고품질의 CdSe 양자점 합성 및 태양전지 응용

  • 최영우;설민수;김우석;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.461.2-461.2
    • /
    • 2014
  • 양자점은 밴드갭을 조절할 수 있거나 multiple exciton generation등 과 같은여러가지 장점을 갖고 있어 양자점 감응형 태양전지에 대한 많은 연구가 진행되어왔다. 하지만 아직까지 이론적인 에너지 전환 효율에 비하여 낮은 효율을 보여주고 있다. 이러한 낮은 효율은 양자점과 전해질 계면에서의 defect나 surface state로 인한 전자-정공의 재결합으로 설명할 수 있다. 본 연구에서는 CdSe 양자점 합성법 중의 하나인 Chemical Bath Deposition의 전구체 농도조절을 통하여 고품질의 CdSe양자점을 합성하였다. 특정 농도에서 CdSe 양자점 표면에 생성되는 SeO2층을 억제하여 CdSe양자점/전해질 계면에서의 전하 재결합 저항을 높였고 가장 높은 에너지 전환 효율을 보여주었다.

  • PDF

A stable solid state quantum dot sensitized solar cell with p-type CuSCN semiconductor and its dopping effect

  • 김희진;설민수;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.378-378
    • /
    • 2011
  • 본 연구에서는 ZnO 나노선 기판을 제작하여 그 위에 밴드갭이 낮은 물질인 CdS, CdSe를 증착시킨 후 p-type 반도체 물질인 CuSCN을 증착시켜 안정성이 향상된 양자점 감응형 태양전지를 제작하였다. ZnO 나노선 기판은 투명한 FTO 기판 위에 ZnO를 진공증착시켜 seed layer를 제작하고 그 위에 $10{\mu}m$정도의 길이의 나노와이어를 성장시킨 후, 밴드갭이 낮은 CdS, CdSe 물질과의 다중접합을 이용하여 제작하고, 이러한 나노선 구조위에 chemical solution deposition을 이용하여 ${\beta}$-CuSCN을 형성시켰다. 양자점 감응형 태양전지는 ZnO 나노선을 photoanode로 이용하고 ZnO 나노선은 암모니아수와 아연염을 이용한, 비교적 저온의 수열합성법을 통해 합성하였고, sensitizer로 쓰인 CdS, CdSe 물질은 CBD방식을 통하여 합성된 나노선 위에 in-situ로 접합시켰다. 또한, 기존의 액체전해질을 이용한 양자점 감응형 태양전지의 안정성을 향상시키기 위해 p-type의 반도체 물질인 CuSCN물질을 propyl sulfide를 이용, ${\sim}80^{\circ}C$의 열을 가하여 in-situ 방식으로 다공성 구조에 효율적으로 접합이 가능하도록 deposition하였다. 일반적으로, CuSCN film은 홀 전도체로서의 장점을 지닌 반면, 전도성이 낮은 단점이 있기 때문에 이를 향상시키기 위해서 첨가제를 이용, 농도에 따라서 전도도가 향상되고 셀의 성능이 향상되는 것을 확인하였다. 이와 같이 합성된 구조는 주사전자현미경(SEM), X-선 회절(XRD), 솔라시뮬레이터 등의 분석장비를 이용하여 태양전지로서의 특성을 분석하였다. 또한 안정성 평가를 위하여 시간에 따른 셀의 특성변화도 비교하였다.

  • PDF

황화납/산화아연 나노선을 이용한 양자점 감응형 태양전지 (Quantum Dot Sensitized Solar Cell Using PbS/ZnO Nanowires)

  • 김우석;용기중
    • 청정기술
    • /
    • 제16권4호
    • /
    • pp.292-296
    • /
    • 2010
  • 황화납(PbS)을 감응물질로 하는 양자점 감응형 태양전지를 제작하고 효율을 측정해 보았다. 기판에 산화아연(ZnO) 나노선을 기른 후 SILAR(Successive ionic layer adsorption and reaction)법으로 PbS 양자점을 합성하고 이를 주사전자현미경(SEM), X-선 회절(XRD)을 통해 확인하였다. SILAR를 통해서 형성된 나노이종구조는 PbS 나노입자들이 ZnO 나노선 위에 균일하게 성장한 것을 확인할 수 있었다. 본 실험에서 PbS을 이용한 양자점 감응형 태양전지의 최고 효율은 one sun에서 0.075%로 나타났으며, 이는 기존의 다른 감응 물질에 비해 비교적 낮은 효율을 나타내었다. 이러한 요인으로는 i) ZnO와 PbS의 밴드갭 배열이 Type-I 형을 이룰 수 있는 가능성, ii) 다양한 크기의 밴드갭을 가지는 PbS에 의한 전자이동 방해 효과, iii) 전해질에 의한 PbS의 안정성 저하 등의 이유를 생각해 볼 수 있으며, 이를 해결하기 위해서는 PbS의 크기분포 조절과 새로운 전해질에 대한 연구가 향후 필요할 것으로 생각된다.

PbS/CdS QDs as Co-sensitizers for QDSSC

  • 김우석;설민수;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.371-371
    • /
    • 2011
  • 본 연구에서는 황화납(PbS)과 황화카드뮴(CdS)을 감응물질로 하는 양자점 감응형 태양전지를 만들고 효율을 측정하였다. Sputter를 이용하여 고진공의 상태에서 산화아연(ZnO) film을 seed layer로 증착한 후 수열합성법으로 ZnO 나노선을 합성한다. 합성된 나노선을 successive ionic layer adsorption and reaction (SILAR) 법으로 PbS, CdS 양자점을 합성하고 이를 주사전자 현미경(SEM), X-선 회절(XRD)을 통해 확인하였다. 또한 PbS와 CdS의 co-sensitizer를 합성하고 diffused reflectance spectra (DRS)를 측정함으로써 넓은 범위의 광흡수도를 확인할 수 있었다. Co-sensitizer의 합성 방법을 달리하여 PbS/CdS를 합성한 후 각각의 효율을 측정해보고, 더 높은 효율을 내기 위한 방안에 대해 고찰하였다.

  • PDF

Development of the 3 Dimensional ZnO Nanostructures for the Highly Efficient Quantum Dot Sensitized Solar Cells

  • 김희진;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.672-672
    • /
    • 2013
  • 본 연구에서는 수열합성법을 기반으로 한 3차원 ZnO 나노구조의 합성을 통해 효율적인 양자점 감응형 태양전지로의 응용을 하고 그 특성을 평가하였다. 기존의 1차원 ZnO 나노구조의 경우 높은 전자이동도와 구조적으로 얻을 수 있는 방향성 있는 전자의 효율적인 전달을 통해 효과적인 광전극으로 많은 관심을 받아왔다. 하지만 나노파티클 기반의 필름에 비해 표면적이 크게 떨어지기 때문에 효과적인 흡광이 어렵다는 단점이 존재하여 높은 효율특성을 내지는 못하였다. 본 연구에서는 이러한 단점을 극복하면서 기존 ZnO 나노선의 장점을 극대화 하기 위해 성장시킨 ZnO 나노선 위에 추가적으로 가지를 형성하여 표면적 향상과 효과적인 전자전달 특성을 얻고자 하였다. 3차원 ZnO 나노구조는citrate 계열의 capping agent의 첨가를 통한 수열 합성법을 통해 1차원의 ZnO 나노선 위에 nanosheet 형식의 가지를 형성하였고 이는 빛의 효과적인 산란특성 및 표면적 향상을 통한 CdS, CdSe의 양자점 증착량을 증가시키는 효과를 얻을 수 있었다. 이러한 태양전지의 소자 특성은 SEM, TEM을 통한 구조 특성평가 및 DRS, J-V curve 및 IPCE를 통한 광학적 특성평가를 통해 확인하였다.

  • PDF

무독성 양자점 감응형 태양전지 연구동향 (Research Trends in Heavy-Metal-Free Quantum Dot Sensitized Solar Cells)

  • 김재엽;고민재
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.126-129
    • /
    • 2015
  • Over the last two decades, quantum dot (QD) solar cells have attracted much attention due to the unique properties of QDs, including band gap tunability, slow hot electron cooling, and multiple exiton generation effect. However, most of the QDs employed in photovoltaic devices contain toxic heavy-metals such as cadmium or lead, which may limit the commercial application. Therefore, recently, heavy-metal-free QDs such as Cu-In-S or Cu-In-Se have been developed for application in solar cells. Here, we review the research trends in heavy-metal-free QD solar cells, mainly focusing on Cu-In-Se QD-sensitized solar cells (QDSC).