• 제목/요약/키워드: 양방향 순환 신경망

검색결과 22건 처리시간 0.027초

음향 이벤트 검출을 위한 DenseNet-Recurrent Neural Network 학습 방법에 관한 연구 (A study on training DenseNet-Recurrent Neural Network for sound event detection)

  • 차현진;박상욱
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.395-401
    • /
    • 2023
  • 음향 이벤트 검출(Sound Event Detection, SED)은 음향 신호에서 관심 있는 음향의 종류와 발생 구간을 검출하는 기술로, 음향 감시 시스템 및 모니터링 시스템 등 다양한 분야에서 활용되고 있다. 최근 음향 신호 분석에 관한 국제 경연 대회(Detection and Classification of Acoustic Scenes and Events, DCASE) Task 4를 통해 다양한 방법이 소개되고 있다. 본 연구는 다양한 영역에서 성능 향상을 이끌고 있는 Dense Convolutional Networks(DenseNet)을 음향 이벤트 검출에 적용하기 위해 설계 변수에 따른 성능 변화를 비교 및 분석한다. 실험에서는 DenseNet with Bottleneck and Compression(DenseNet-BC)와 순환신경망(Recurrent Neural Network, RNN)의 한 종류인 양방향 게이트 순환 유닛(Bidirectional Gated Recurrent Unit, Bi-GRU)을 결합한 DenseRNN 모델을 설계하고, 평균 교사 모델(Mean Teacher Model)을 통해 모델을 학습한다. DCASE task4의 성능 평가 기준에 따라 이벤트 기반 f-score를 바탕으로 설계 변수에 따른 DenseRNN의 성능 변화를 분석한다. 실험 결과에서 DenseRNN의 복잡도가 높을수록 성능이 향상되지만 일정 수준에 도달하면 유사한 성능을 보임을 확인할 수 있다. 또한, 학습과정에서 중도탈락을 적용하지 않는 경우, 모델이 효과적으로 학습됨을 확인할 수 있다.

RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지 (Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera)

  • 신병근;김응호;이상우;양재영;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.491-500
    • /
    • 2021
  • 본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.