• Title/Summary/Keyword: 양방향 반사 분포 함수

Search Result 12, Processing Time 0.031 seconds

Measurement System of Bidirectional Reflectance-distribution Function (양방향 반사율 분포함수 측정시스템)

  • Hwang, Ji-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.46-52
    • /
    • 2010
  • A theory of bidirectional reflectance-distribution function (BRDF), a newly developed BRDF measurement system, and a method for evaluating the uncertainty of BRDF measurements are presented. The BRDF measurement system which measures BRDF in a wavelength range of (380~1500) nm with an angle range of $(-75{\sim}75)^{\circ}$ was installed. The measurement uncertainties, consisting of correlated terms and uncorrelated terms, were evaluated for the BRDF measurement system, resulting in the relative expanded uncertainty less than 3% (k=2).

양방향 분포 함수가 적용된 달의 3D 광학 모델

  • Yu, Jin-Hui
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.31.3-31.3
    • /
    • 2011
  • 달의 양방향 분포 함수는 Hapke에 의하여 처음 이론적 모델이 만들어졌고, 이후 Foote에 의해 아폴로 11호의 달 토양 샘플 10084의 양방향 분포 함수가 측정된 바 있다. 이 연구에서는 실제 크기의 달의 표면에 Hapke의 양방향 분포 함수를 적용하여 광학 모델은 개발하였다. 달 표면의 산란특성 중 반 무한하고 매끄러운 지면에 적용되는 후방산란 효과와 산란각에 따른 위상 함수가 적용된 모델이 사용되었으며, 위상함수로는 Henyey-Greenstein 함수가 사용되었다. 달의 3D 모델에 사용된 매개 변수는 Foote가 측정한 Hapke의 변수를 따랐으며 달의 단일 산란 알베도는 w=0.33, 핫스팟의 넓이는 h=0.017, Legendre 다항 계수인 b와 c에는 각각 b=0.308, c=0.425의 값이 사용되었다. 구성된 달의 양방향 분포 함수를 이용한 통합적 광선 추적 수치 모사 결과, 달 반사광의 복사 휘도율은 1차 근사 해석적 방법을 이용한 계산 결과의 복사 휘도율과 측정 오차 범위 이내의 오차를 보였다.

  • PDF

Realistic representation based on measured BRDF data (측정 기반 BRDF 데이터를 이용한 실감재질표현 연구)

  • Yoo, Hyun-Jin;Kim, Kang-Yeon;Kim, Hoe-Min;Seo, Myoung-Kook;Ko, Kwang-Hee;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1019-1024
    • /
    • 2007
  • 그래픽스 분야에서 다양한 재질을 사실감 있게 표현하려는 연구가 활발히 진행되고 있는 가운데, 다양한 재질의 반사특성을 측정하는 방법들이 시도되고 있다. 본 연구에서는 디지털 카메라를 이용하여 영상 기반 양방향 반사 분포함수(BRDF: Bidirectional Reflectance Distribution Function)를 획득할 수 있는 측정 시스템을 구축하였다, 이를 통한 BRDF 모델은 경험적(empirical)혹은 물리(physical)기반의 모델에 비해 보다 사실성 높은 표현이 가능하다. 영상 기반으로 양방향 반사 분포함수를 생성하는 과정에서 노출시간을 달리한 여러 장의 영상을 가지고 HDR(High Dynamic Range) 영상을 생성하였다. 또한 원색재현을 위해 표준광원을 사용하고 컬러차트와 회귀분석을 통해 컬러 보정을 수행하였다. 본 연구에서는 플라스틱이나 금속재질같이 불투명한 등방성(isotropic) 재질을 사용하였고, 이러한 재질의 BRDF데이터를 통해 산업제품에서 많이 사용되는 재질의 모델을 보다 실감나게 렌더링(rendering)할 수 있다.

  • PDF

A Study on the Influence of the Object's Reflectance on the Active Range Finder (물체의 반사성질이 능동형광센서에 미치는 영향에 관한 연구)

  • 이철원;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2944-2953
    • /
    • 1994
  • Active range finders using laser beam have been widely used for the factory automation and quality assurance, but they may be unreliable if the object' slope is steep or its surface is specular. The reliability of an active range finder was analyzed for the variation of the reflected laser beam intensity. First, the properties of the object's reflection were modeled by using the bidirectional reflectance-distribution function(BRDF), and then the variation of the laser beam brightness was formulated for the different configuratioin of the object and sensor. The experimental data of the laser beam reflection were obtained for two materials, mild steel and stainless steel. The parameters of the proposed model were obtained by fitting the data of the mild steel to the model and it was found that the results calculated from the proposed model were in good agreement with the experimental data.

Realtime Fabric Rendering with Deformed Anisotropic Reflectance (이방성 반사의 변형을 통한 실시간 옷감 렌더링)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.10 no.4
    • /
    • pp.81-90
    • /
    • 2010
  • In this paper, an efficient method is proposed to produce photorealistic images of woven fabrics without empirical data such as the measured BRDFs(bidirectional reflectance distribution functions). The proposed method is applicable both to ray tracer based offline renderers and to realtime applications such as games. The proposed method models the reflectance properties of woven fabric with alternating anisotropy and deformed MDF(microfacet distribution function). The procedural modeling of the yarn structure effectively and efficiently reproduces plausible rendering of woven fabric. The experimental results show the proposed method can be successfully applied to photorealistic rendering of diverse woven fabric materials even in interactive applications.

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method (광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.

A Study on a High Speed Computational Scheme for the Reflected IR Signal Component by Considering the BRDF (BRDF를 고려한 적외선 신호의 반사 성분 고속 연산기법에 관한 연구)

  • Kim, Dong-Geon;Han, Kuk-Il;Choi, Jun-Hyuk;Choi, Soon-Ho;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • This paper is a part of developing a computer code that can be used to generate synthetic IR images by calculating the outgoing infrared signal from objects. To predict the reflected component that is a part of the outgoing IR signal, such as those components reflected from the target surface by the solar and sky irradiations, it is necessary to calculate the complicated BRDF values for considering the directional surface reflection characteristics. Since the calculation of reflectance using the BRDF requires a large amount of computation time due to the hemispherical integral term, it is frequently restricted in applying for a real-time prediction of IR signal. In this research, the simplified method for calculating IR reflected component has been proposed by replacing the integral terms into two parts, a directionally uniform component and a step function representing the specular component, to reduce computation time. The proposed method is proved to result in very fast calculation of the BRDF (up to 600 times faster calculations) for most of the surfaces with minimal loss of the accuracy.

Image based Shading Techniques for Surfaces with Irregular and Complex Textures Formed by Heterogeneous Materials (이종물질에 의해 복잡한 불규칙 무늬가 형성된 물체 표면의 영상 기반 셰이딩 기법)

  • Lee, Joo-Rim;Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper we present a shading technique for realistic rendering of the surfaces with irregular and complex textures using a single photograph. So far, most works have been using many photographs or special photographing equipment to render the surfaces with irregular and complex textures as well as dividing texture regions manually. We present an automatic selection method of the region segmentation techniques according to properties of materials. As our technique produces a reflectance model and the approximated Bidirectional Reflection Distribution Function(BRDF) parameters, it allows the recovery of the photometric properties of diffuse, specular, isotropic or anisotropic textured objects. Also it make it possible to present several synthetic images with novel lighting conditions and views.

High-Resolution Sentinel-2 Imagery Correction Using BRDF Ensemble Model (BRDF 앙상블 모델을 이용한 고해상도 Sentinel-2 영상 보정)

  • Hyun-Dong Moon;Bo-Kyeong Kim;Kyeong-Min Kim;Subin Choi;Euni Jo;Hoyong Ahn;Jae-Hyun Ryu;Sung-Won Choi;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1427-1435
    • /
    • 2023
  • Vegetation indices based on selected wavelength reflectance measurements are used to represent crop growth and physiological conditions. However, the anisotropic properties of the crop canopy surface can govern spectral reflectance and vegetation indices. In this study, we applied an ensemble of bidirectional reflectance distribution function (BRDF) models to high-resolution Sentinel-2 satellite imagery and compared the differences between correction results before and after reflectance. In the red and near-infrared (NIR) band reflectance images, BRDF-corrected outlier values appeared in certain urban and paddy fields of farmland areas and forest shadow areas. These effects were equally observed when calculating the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2). Furthermore, the outlier values in corrected NIR band were shown in pixels shadowed by mountain terrain. These results are expected to contribute to the development and improvement of BRDF models in high-resolution satellite images.

Optical Simulation Study on the Performances of Collimating Films for LCD Backlight Applications (액정표시장치 백라이트용 집광필름의 광학특성 분석을 위한 시뮬레이션 기법 연구)

  • Park, Ji-Hee;Lee, Jung-Ho;Jeong, Jin-Ha;Nahm, Kie-Bong;Ko, Jae-Hyeon;Kim, Joong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.432-440
    • /
    • 2007
  • Optical simulation methods such as a ray tracing technique have been widely used to predict the optical performances of collimating films for LCD backlight applications. It is necessary to optimize simulation conditions which have substantial effect on the simulation result in order to predict accurate performances of collimating films. We have set up a very simple backlight model consisting of a reflection film, a virtual flat light-source, and a prism film, which is a representative collimating film for backlight, in order to analyze the simulation conditions which are strongly correlated with the on-axis luminance gain and the viewing-angle characteristics of prism films. It was found that the dependence of the relative change in the on-axis luminance on the structure and material properties of collimating films can be derived from the above-mentioned simple BLU model and from simulation using it. However, the exact reflection property of the reflection film and the distribution of the incident light onto the optical film were found to be very important for revealing exact viewing-angle characteristics of collimating films.