• Title/Summary/Keyword: 양력 확률분포

Search Result 5, Processing Time 0.016 seconds

Development of Probabilistic Models Optimized for Korean Marine Environment Varying from Sea to Sea Based on the Three-parameter Weibull Distribution (우리나라 해역별 해양환경에 최적화된 확률모형 개발)

  • Yong Jun Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.20-36
    • /
    • 2024
  • In this study, probabilistic models for the wave- and lifting forces were derived directly from long-term in-situ wave data embedding the Korean marine environment characteristics varying from sea to sea based on the Three-Parameter Weibull distribution. Korean marine environment characteristics varying from sea to sea carved out their presence on the probability coefficients of probabilistic models for wave- and lifting forces. Energetic wave conditions along the southern coast of Korea distinguish themselves from the others with a relatively large scale coefficient, small location coefficient, and shape coefficient around 1.3. On the other hand, mild marine environment along the western coast has a small variability, leading to small scale-coefficient, large location coefficient and shape coefficient around 2.0. In the sea off Mokpo, near the boundary between the South- and West Seas, marine environment was characterized by small scale-coefficient, large location coefficient, and shape coefficient around 1.2, implying that marine environments characteristics of the South-and West Sea coexist in the sea off Mokpo.

Uncertainty Analysis of Wave Forces on Upright Sections of Composite Breakwaters (혼성제 직립벽에 작용하는 파력의 불확실성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.258-264
    • /
    • 2011
  • A MCS technique is represented to stochastically analyze the uncertainties of wave forces exerted on the upright sections of composite breakwaters. A stochastical models for horizontal and uplift wave forces can be straightforwardly formulated as a function of the probabilistic characteristics of maximum wave height. Under the assumption of wave forces followed by extreme distribution, the behaviors of relative wave forces to Goda's wave forces are studied by the MCS technique. Double-truncated normal distribution is applied to take the effects of uncertainties of scale and shape parameters of extreme distribution into account properly. Averages and variances of relative wave forces are quantitatively calculated with respect to the exceedance probabilities of maximum design wave height. It is found that the averages of relative wave forces may be decreased consistently with the increases of the exceedance probabilities. In particular, the averages on uplift wave force are evaluated slightly larger than those on horizontal wave force, but the variations of coefficient of the former are adversely smaller than those of the latter. It means that the uncertainties of uplift wave forces are smaller than those of horizontal wave forces in the same condition of the exceedance probabilities. Therefore, the present results could be useful to the reliability based-design method that require the statistical properties about the uncertainties of wave forces.

Numerical Optimization of Offshore Wind Turbine Blade for Domestic Use using Improvement of the Design Space Feasibility (설계공간 타당성 향상을 통한 한국형 해상풍력터빈 블래이드 최적형상설계 연구)

  • Lee, Ki-Hak;Joo, Wan-Don;Hong, Sang-Won;Kim, Kyu-Hong;Lee, Kyung-Tae;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.281-286
    • /
    • 2006
  • 본 연구의 목적은 차세대 대체에너지로 각광받는 풍력발전 중에서 육상발전보다 여러 가지 이점이 있는 한국형 해상풍력터빈 블레이드의 최적형상설계를 위한 알고리즘을 구현하는 것이다. 블레이드 단면 익형의 양력과 항력 분포는 XFOIL을 이용하여 예측하였다. 첫 번째 수준의 설계변수인 각각의 블레이드 지름과 축 회전수에서 익형의 공력변수들과 최소에너지손실 조건을 이용하여 두 번째 설계변수인 각 블레이드 단면에서의 시위길이와 피치각 분포를 최적화하였다. 그리고 성능결과를 바탕으로 반응면을 구성하고, 확률적 방법을 이용하여 타당성 있는 설계공간까지 첫 번째 설계변수를 이동시키고 구배최적화 기법을 통해 각각의 제약함수를 만족하면서 목적함수를 죄대로 하는 최적블레이드 형상을 구현하였다. 설계된 최적형상에 대해 탈설계점 해석을 수행하여 성능을 구하였다.

  • PDF

Reliability-Based Design Optimization for a Vertical-Type Breakwater with an Emphasis on Sliding, Overturn, and Collapse Failure (직립식 방파제 신뢰성 기반 최적 설계: 활동, 전도, 지반 훼손으로 인한 붕괴 파괴를 중심으로)

  • Yong Jun Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.50-60
    • /
    • 2024
  • To promote the application of reliability-based design within the Korean coastal engineering community, the author conducted reliability analyses and optimized the design of a vertical-type breakwater, considering multiple limit states in the seas off of Pusan and Gunsan - two representative ports in Korea. In this process, rather than relying on design waves of a specific return period, the author intentionally avoided such constraints. Instead, the author characterized the uncertainties associated with wave force, lift force, and overturning moment - key factors significantly influencing the integrity of a vertical-type breakwater. This characterization was achieved by employing a probabilistic model derived from the frequency analysis results of long-term in-situ wave data. The limit state of the vertical-type breakwater encompassed sliding, overturning, and collapse failure, with the close interrelation between wave force, lift force, and moment described using the Nataf joint probability distribution. Simulation results indicate, as expected, that considering only sliding failure underestimates the failure probability. Furthermore, it was shown that the failure probability of vertical-type breakwaters cannot be consistently secured using design waves with a specific return period. In contrast, breakwaters optimally designed to meet the reliability index requirement of 𝛽-3.5 to 4 consistently achieve a consistent failure probability across all sea areas.

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass II - Estimation of rise time - (암반에 전달된 밀장전 발파입력의 획률론적 예측 II - 최대압력 도달시간 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Sang-Gyun;Lee, Sang-Don;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.25-40
    • /
    • 2004
  • The supersonic shock wave generated by fully coupled explosion will change into subsonic shock wave, plastic wave, and elastic wave consecutively as the wave propagates through rock mass. While the estimation of the blast-induced peak pressure was the main aim of the companion paper, this paper will concentrate on the estimation of the rise time of blast-induced pressure. The rise time can be expressed as a function of explosive density, isentropic exponent, detonation velocity, exponential coefficient of the peak pressure attenuation, dynamic yield stress, plastic wave velocity, elastic wave velocity, rock density, Hugoniot parameters, etc. Parametric analysis was performed to pinpoint the most influential parameter that affects the rise time and it was found that rock properties are more sensitive than explosive properties. The probabilistic distribution of the rise time is evaluated by the Rosenblueth'S point estimate method from the probabilistic distributions of explosive properties and rock properties. Numerical analysis was performed to figure out the effect of rock properties and explosive properties on the uncertainty of blast-induced vibration. Uncertainty analysis showed that uncertainty of rock properties constitutes the main portion of blast-induced vibration uncertainty rather than that of explosive properties. Numerical analysis also showed that the loading rate, which is the ratio of the peak blasting pressure to the rise time, is the main influential factor on blast-induced vibration. The loading rate is again more influenced by rock properties than by explosive properties.

  • PDF