• Title/Summary/Keyword: 양극 산화 알루미늄

Search Result 183, Processing Time 0.026 seconds

Comparison of Hydrophobicity and Corrosion Properties of Aluminum 5052 and 6061 Alloys After Anodized Surface Treatment (알루미늄 5052 및 6061 합금의 양극산화 표면처리를 통한 발수 특성 및 부식 특성 비교)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.200-208
    • /
    • 2022
  • Aluminum alloy is used by adding various elements according to the needs of the industry. Aluminum alloys such as 5052 and 6061 are known to possess excellent corrosion resistance by adding Mg. Despite their excellent physical properties, corrosion can occur. To solve this problem, an anodization technique generally can improve corrosion resistance by forming an oxide structure with maximized hydrophobic properties through coatings. In this study, the anodizing technique was used to improve the hydrophobicity of aluminum 5052 and 6061 by creating porous nanostructures on top of the surface. An oxide film was formed by applying anodizing voltages of 20, 40, 60, 80, and 100 V to aluminum alloys followed by immersion in 0.1 M phosphoric acid for 30 minutes to expand oxide pores. Contact angle and corrosion characteristics were different according to the structure after anodization. For the 5052 aluminum, the corrosion potential was improved from -363 mV to -154 mV as the contact angle increased from 116° to 136°. For the 6061 aluminum, the corrosion potential improved from -399 mV to -124 mV when the contact angle increased from 116° to 134°.

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method (양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구)

  • Kim, Jisoo;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection (알루미늄 합금의 수소취화 방지를 위한 경질양극산화 및 플라즈마이온질화의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.221-231
    • /
    • 2023
  • Interest in aluminum alloys for the hydrogen valves of fuel cell electric vehicles (FCEVs) is growing due to the reduction in fuel efficiency by the high weight. However, when an aluminum alloy is used, deterioration in mechanical characteristics caused by hydrogen embrittlement and wear is regarded as a problem. In this investigation, the aluminum alloy used to prevent hydrogen embrittlement was subjected to surface treatments by performing hard anodizing and plasma ion nitriding processes. The hard anodized Al alloy exhibited brittleness in which the mechanical characteristics rapidly deteriorated due to porosity and defects of surface, resulting in a decrease in the ultimate tensile strength and modulus of toughness by 15.58 and 42.51%, respectively, as the hydrogen charging time increased from 0 to 96 hours. In contrast, no distinct nitriding layer in the plasma ion-nitrided Al alloy was observed due to oxide film formation and processing conditions. However, compared to 0 and 96 hours of hydrogen charging time, the ultimate tensile strength and modulus of toughness decreased by 7.54 and 13.32%, respectively, presenting excellent resistance to hydrogen embrittlement.

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate (TiO2 nanotube plate의 질산성질소 전기분해 효율 평가)

  • Kim, Da Eun;Lee, Yongho;Han, Heeju;Choi, Hyo yeon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.612-621
    • /
    • 2018
  • In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.

Observation of Corrosion Behavior with Aluminum 5052 Alloy by Modulating Anodization Time (양극산화 공정시간에 따른 알루미늄 5052 합금의 산화피막 성장 및 내식성 관찰)

  • Ji, HyeJeong;Choi, Dongjin;Jeong, Chanyoung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.67-67
    • /
    • 2018
  • The 5xxx series aluminum alloys are recently used in not only marine system but also automotive area because of a low density material, good mechanical properties and better resistance to corrosion. However, Aluminum alloys are less resistant than the purest aluminum such as 1xxx aluminum alloy. Electrochemical anodization technique has attracted in the area of surface treatment because of a simple procedure, a low-cost efficiency than other techniques such as lithography and a large volume of productivity, and so on. Here, The relationship between the corrosion behavior and the thickness of aluminum anodic oxide have been studied. Prior to anodization, The 5052 aluminum sheets ($30{\times}20{\times}1mm$) were degreased by ultra-sonication in acetone and ethanol for 10 minutes and eletropolished in a mixture of perchloric acid and ethanol (1:4, volume ratio) under an applied potential of 20V for 60 seconds to obtain a regular surface. During anodization process, Aluminum alloy was used as a working electrode and a platinum was used as a counter electrode. The two electrodes were separated at a distance of 5cm. The applied voltage of anodization is conducted at 40V in a 0.3M oxalic acid solution at $0^{\circ}C$ with appropriate magnetic stirring. The surface morphology and the thickness of AAO films was observed with a Scanning Electron Microscopy (SEM). The corrosion behavior of all samples was evaluated by an open-circuit potential and potentio-dynamic polarization test in 3.5wt% NaCl solution. Thus, The corrosion resistance of 5052 aluminum alloy is improved by the formation of an anodized oxide film as function of increase anodization time which artificially develops on the metal surface. The detailed electrochemical behavior of aluminum 5052 alloy will be discussed in view of the surface structures modified by anodization conditions such as applied voltages, concentration of electrolyte, and temperature of electrolyte.

  • PDF

Properties of double-layered anodizing films on Al alloys formed by two consecutive anodizings (알루미늄 합금의 연속식 양극산화법으로 형성시킨 이중 산화막층의 특성)

  • Jeong, Nagyeom;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.30-36
    • /
    • 2021
  • In this study, double-layered anodizing films were formed on Al 5052 and Al 6061 alloys consecutively first in sulfuric acid and then in oxalic acid, and hardness, withstand voltage, surface roughness and acid resistance of the anodizing films were compared with single-layered anodizing films in sulfuric acid and oxalic acid electrolytes. Hardness of the double-layered anodizing film decreased with increasing ratio of inner layer to outer layer for both Al 5052 and Al 6061 alloys, suggesting that outer anodizing film formed in sulfuric acid electrolyte is damaged during the second anodizing in oxalic acid electrolyte. Withstand voltage of the double-layered anodizing films increased with increasing the thickness ratio of inner layer to outer layer. Surface roughness of the double-layered anodizing films were comparable with that of single-layered anodizing film formed in sulfuric acid but higher than that of single layer anodizing film formed in oxalic acid electrolyte. In acid resistance test, all of the double-layered and single-layered anodizing films showed good acid resistance more than 3 h without any visible gas evolution, which is attributable to sealing of pores. Based on the experimental results obtained in this work, it is possible to design a double-layered anodizing film with cost-effectiveness and improved physical and electrical properties by combining two consecutive anodizing processes of sulfuric acid anodizing and oxalic acid anodizing methods.

Pre-treatment condition and Curing method for Fabrication of Al 7075/CFRP Laminates (Al 7075/CFRP 적층 복합재료 제조를 위한 전처리 조건과 경화방법 연구)

  • 이제헌;김영환
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.42-53
    • /
    • 2000
  • A study has been made to establish an optimum condition in the surface treatment and curing method that is important for the fabrication of Al 7075/CFRP laminates. PAA(Phosphoric Acid Anodizing) provided a good adhesive strength and FPL(Sulfuric / Sodium Dichromate Acid Etching) had a similar adhesive strength with PAA. On the other hand, the poor adhesive strength was shown on vapor degrease and CAA(Chromic Acid Anodizing). By using the atomic force microscope(AFM), it was found that the PAA oxide surface obviously had a greater degree of microroughness as compared to vapor degrease, CAA and FPL treated surfaces. These results support the concept of a mechanical interlocking of the adhesive with-in the oxide pores as the predominant adhesion mechanism. In curing methods, the adhesive strength of co-curing method was higher than that of secondary curing method. With respect to stability of specimen shape, the secondary curing method was better than co-curing method. DMA(Dynamic Mechanical Analysis) test revealed $T_g$ in curing times over 60 min is nearly same, so it is estimated they will have similar degree of curing and joint durability in using FM300M adhesive film.

  • PDF

The Method of Exposure Determination for Digital Infrared Photography in Forensic Field (법과학 분야에서 디지털 적외선 사진을 위한 노출 결정 방법)

  • Kim, Sang-Ki;Kim, Yoo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.181-191
    • /
    • 2014
  • In the past, making IR photography needed somewhat complicated process, so its application fields were limited. However, it has become easy to make IR photography with advanced digital technology, so it is expected that the fields of IR photography and existing limit due to difficult making process will be expanded. Therefore, in this study, it is decided that the need of IR standard chart which allows us to manage exposure and tone of IR photography for scientific purpose will increase. Two methods were used to make IR standard chart. First method is to use aluminum. When aluminum has oxide coating through anodic oxidation, it has high durability, corrosion resistance and heat resistance. Also, IR reflectance of aluminum can be controlled in some degree depending on the thickness of oxide coating. Second method is to use pigments. Yellow 10P150 pigment is used for the brightest patch. This pigment is appropriate in this study due to high heat resistance and IR reflectance. Carbon black is used for the darkest patch. Carbon black absorbs much IR, and its color is not faded by any source of light. IR reflectance is adjusted elaborately by mixing two pigments. Finally, 6 patches are selected with consideration for actual IR reflectance of patches. As a result, IR reflectance of random subjects can be known approximately and IR photographs can have appropriate contrast with the IR standard chart.

Fabrication of Nanowellstructured and Nanonetstructured Metal Films using Anodic Porous Alumina Film (다공성 알루미나 박막을 이용한 금속 나노우물과 나노그물 구조의 박막 제작)

  • Noh, Ji-Seok;Chin, Won-Bai
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.518-526
    • /
    • 2006
  • Nanoporous alumina film was fabricated by anodization of an aluminum sheet. Highly ordered nanowellstructured and nanonets-tructured metal films were fabricated by vacuum evaporation of several metals(Al, Sn, and Co) using the anodic nanoporous alumina film as a template. In this experiment, an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used. The resistance heating method was adopted for evaporating a desired metal, and vapor deposition was carried out under the base pressure of torr. It was founded that whether the structure fabricated by vacuum evaporation is nanowell or nanonet is dependent on the amount of deposited material. When an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used, a nanowell-structured film was fabricated when a sufficient amount of metal was suppled to cover the surface pores. On the other hand, nanonet-structured film was fabricated bellow a half the amount of metal required for nanowell-structured film.

A Study on the Treatment of soil Flushing Effluent Using Electrofloatation (전기부상법을 이용한 토양세정 유출수 처리에 관한 연구)

  • 소정현;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.79-84
    • /
    • 2002
  • The optimal operation conditions, including voltage applied, reaction time, distance between electrodes. and electrode material. were investigated for the treatment of soil flushing effluent using electrofloatation. When 3V was applied for 1 hour, 88% oil-water separation efficiency was achieved. In case of 6V and above, 90% efficiencies were achieved. As reaction time and distance between electrodes were longer, separation efficiencies were higher and lower, respectively. Separation efficiencies for different anode materials were copper > aluminum > iron > titanium. It might result from the differences of their electrical conductivities.