• 제목/요약/키워드: 양극 산화 알루미늄

검색결과 183건 처리시간 0.02초

알루미늄 도핑된 산화아연 양극을 적용한 고효율 유기발광다이오드 (Efficient Organic Light-emitting Diodes with Aluminum-doped Zinc Oxide Anodes)

  • 이호년;이영구;정종국;이성의;오태식
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.711-715
    • /
    • 2007
  • Properties of organic light-emitting diodes (OLEDs) with aluminum-doped zinc oxide (ZnO:Al) anodes showed different behaviors from OLEDs with indium tin oxide (ITO) anodes according to driving conditions. OLEDs with ITO anodes gave higher current density and luminance in lower voltage region and better EL and power efficiency under lower current density conditions, However, OLEDs with ZnO:Al anodes gave higher current density and luminance in higher voltage region over about 8V and better EL and power efficiency under higher current density over $200mA/cm^2$. These seemed to be due to the differences in conduction properties of semiconducting ZnO:Al and metallic ITO. OLEDs with ZnO:Al anodes showed nearly saturated efficiency under high current driving conditions compared with those of OLEDs with ITO anodes. This meant better charge balance in OLEDs with ZnO:Al anodes. These properties of OLEDs with ZnO:Al anodes are useful in making bright display devices with efficiency.

실리콘 및 사파이어 기판을 이용한 알루미늄의 양극산화 공정에 관한 연구 (Fabrication of Anodic Aluminum Oxide on Si and Sapphire Substrate)

  • 김문자;이진승;유지범
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.133-140
    • /
    • 2004
  • We carried out anodic aluminum oxide (AAO) on a Si and a sapphire substrate. For anodic oxidation of Al two types of specimens prepared were Al(0.5 $\mu\textrm{m}$)!Si and Al(0.5 $\mu\textrm{m}$)/Ti(0.1 $\mu\textrm{m}$)$SiO_2$(0.1 $\mu\textrm{m}$)/GaN(2 $\mu\textrm{m}$)/Sapphire. Surface morphology of Al film was analyzed depending on the deposition methods such as sputtering, thermal evaporation, and electron beam evaporation. Without conventional electron lithography, we obtained ordered nano-pattern of porous alumina by in- situ process. Electropolishing of Al layer was carried out to improve the surface morphology and evaluated. Two step anodizing was adopted for ordered regular array of AAO formation. The applied electric voltage was 40 V and oxalic acid was used as an electrolyte. The reference electrode was graphite. Through the optimization of process parameters such as electrolyte concentration, temperature, and process time, a regular array of AAO was formed on Si and sapphire substrate. In case of Si substrate the diameter of pore and distance between pores was 50 and 100 nm, respectively. In case of sapphire substrate, the diameter of pore and distance between pores was 40 and 80 nm, respectively

알루미늄 6061-T6 합금에 대한 양극산화층이 해수 내 부식 및 응력부식균열에 미치는 영향 (Effect on Anodizing Oxide Film for Aluminum 6061-T6 Alloy on Corrosion and Stress Corrosion Cracking in Seawater)

  • 신동호;황현규;정광후;김성종
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.219-226
    • /
    • 2020
  • This paper investigated the characteristics of anodized aluminum 6061-T6 alloy for corrosion and stress corrosion cracking(SCC) under natural seawater. The hard anodizing oxide film formed on the 6061-T6 was a uniform thickness of about 25 ㎛. The corrosion characteristics were performed with a potentiodynamic polarization test. SCC was characterized by a slow strain rate tensile test under 0.005mm/min rate. As a result, the anodizing film showed no significant effect on SCC in the slow strain rate test. However, the corrosion current density of base metal was measured to be approximately 13 times higher than that of the anodized specimen. Therefore, the anodizing film significantly improved the corrosion resistance of 6061-T6 alloy in natural seawater.

알루미늄 양극산화 피막의 상전이에 미치는 수화처리의 영향 (Effects of Hydration Treatments on the Phase Transition of Anodic Aluminum Oxide Layers)

  • 주은균;김성수;오한준;조수행;지충수
    • 한국재료학회지
    • /
    • 제12권7호
    • /
    • pp.540-544
    • /
    • 2002
  • Hydration treatments were performed on the pure aluminum substrate at $100^{\circ}C$ followed by anodizing and heat treatments on the layers. The transformation behaviors of the oxide layers according to the hydration treatment were studied using TEM, XRD, RBS etc. Above $90^{\circ}C$ the hydrous oxide film could be formed, which were turned out to be hydrous oxides(AlOOH $nH_2$O). The anodization on the hydrous oxide film was more effective for the transition of amorphous anodic oxides to the crystalline $\Upsilon-Al_2$ $O_3$ comparing with the case for anodizing on the aluminum substrate without hydration treatment And additional heat treatments were also helpful for the acceleration of the transformation of the hydrous oxide to $\Upsilon-Al_2$ $O_3$. During the heat treatment the interface between $\Upsilon-Al_2$ $O_3$and the hydrous oxide layers migrated to the outer side of hydrous layer.

Pulse도금법에 의한 Ag주입 양극산화 알루미늄 합금의 항균특성에 관한 기초연구 (A Study on the Antibacterial Properties of Ag Electropulsed Anodized Aluminium Alloy)

  • 임기영;기준서;장용석;이우민;윤정모
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.639-646
    • /
    • 2006
  • Over the last two decades, microbiologically influenced corrosion (MIC) of metallic materials has received considerable attention due to its serious effects on industrial field. In this context, it is important to devise control methods which inhibit biofilm formation on various metallic compounds and are compatible with environment. It was change of various conditions (duty cycle, current density, $AgNO_3$ concentration and pH) for injection of Ag particles in anodized Aluminum alloy pore using pulsed current. Optimal condition was obtained by means of FE-SEM, ICP analysis etc. The antibacterial metal's specimen were manufactured under optimal condition and this specimen were tested the antibacterial characterization and anticorrosion characterization. In result of test, we can confirmed that the antibacterial characterization and anticorrosion characterization of the specimens of injected Ag particles in anodized Aluminum alloy pore using pulsed current were better than the anodized Aluminum alloy specimens.

양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성 (Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

소수성 처리된 나노다공성 알루미늄 양극산화피막의 제빙 (De-icing of the hydrophobic treated nanoporous anodic aluminum oxide layer)

  • 신예지;김진휘;신동민;문형석;이정훈
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.222-229
    • /
    • 2021
  • Icing causes various serious problems, where water vapor or water droplets adhere at cold conditions. Therefore, understanding of ice adhesion on solid surface and technology to reduce de-icing force are essential for surface finishing of metallic materials used in extreme environments and aircrafts. In this study, we controlled wettability of aluminum alloy using anodic oxidation, hydrophobic coating and lubricant-impregnation. In addition, surface porosity of anodized oxide layer was controlled to realize superhydrophilicity and superhydrophobicity. Then, de-icing force on these surfaces with a wide range of wettability and mobility of water was measured. The results show that the enhanced wettability of hydrophilic surface causes strong adhesion of ice. The hydrophobic coating on the nanoporous anodic oxide layer reduces the adhesion of ice, but the volume expansion of water during the freezing diminishes the effect. The lubricant-impregnated surface shows an extremely low adhesion of ice, since the lubricant inhibits the direct contact between ice and solid surface.

테플론 코팅과 오일 담지를 이용한 알루미늄 양극산화피막의 응축 열전달 향상 (Enhancement of Condensation Heat Transfer of Anodized Aluminum by Teflon Coating and Oil-Impregnation)

  • 강민주;이종훈;차수진;신예지;김동현;김경자;이정훈
    • 한국표면공학회지
    • /
    • 제54권2호
    • /
    • pp.90-95
    • /
    • 2021
  • Surface modification technique enabling the control of condensation provides various benefit in various engineering systems, such as heat transfer, desalination, power plants, and so on. In this study, lubricant oil-impregnation into Teflon-coated nanoporous anodic oxide layer of aluminum to enhance a de-wetting and mobility of water droplet on surface. Due to the surface treatment improving water-repellency, the condensation mode is changed to dropwise, thus the frequency of sliding condensed water droplet on surface is increased. For these reasons, the surface of oil-impregnated Teflon-coated nanoporous anodic aluminum oxide shows significantly enhanced condensation heat transfer compared to bare aluminum surface. In addition, the porosity of anodic aluminum oxide affected the mobility of water droplet even with oil-impregnation and Teflon-coating, indicating that the optimization of porous structure of anodic oxide is required for maximizing the condensation heat transfer.

스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향 (The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys)

  • 정상옥;김성종
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구 (Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.