• Title/Summary/Keyword: 약한 인공지능

Search Result 174, Processing Time 0.022 seconds

A method for metadata extraction from a collection of records using Named Entity Recognition in Natural Language Processing (자연어 처리의 개체명 인식을 통한 기록집합체의 메타데이터 추출 방안)

  • Chiho Song
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.2
    • /
    • pp.65-88
    • /
    • 2024
  • This pilot study explores a method of extracting metadata values and descriptions from records using named entity recognition (NER), a technique in natural language processing (NLP), a subfield of artificial intelligence. The study focuses on handwritten records from the Guro Industrial Complex, produced during the 1960s and 1970s, comprising approximately 1,200 pages and 80,000 words. After the preprocessing process of the records, which included digitization, the study employed a publicly available language API based on Google's Bidirectional Encoder Representations from Transformers (BERT) language model to recognize entity names within the text. As a result, 173 names of people and 314 of organizations and institutions were extracted from the Guro Industrial Complex's past records. These extracted entities are expected to serve as direct search terms for accessing the contents of the records. Furthermore, the study identified challenges that arose when applying the theoretical methodology of NLP to real-world records consisting of semistructured text. It also presents potential solutions and implications to consider when addressing these issues.

Advanced CBS (Cost Breakdown Structure) Code Search Technology Applying NLP (Natural Language Processing) of Artificial Intelligence (인공지능 자연어 처리 기법을 이용한 개선된 내역코드 탐색방법)

  • Kim, HanDo;Nam, JeongYong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.719-731
    • /
    • 2024
  • For efficient construction management, linking BIM with schedule and cost is essential, but there are limits to the application of 5D BIM due to the difficulty in disassembling thousands of WBS and CBS. To solve this problem, a standardized WBS-CBS set is configured in advance, and when a new construction project occurs, the CBS in the BOQ is automatically linked to the WBS when a text most similar to it is found among the standard CBS (Public Procurement Service standard construction code) of the already linked set. A method was used to compare the text similarity of CBS more efficiently using artificial intelligence natural language processing techniques. Firstly, we created a civil term dictionary (CTD) that organized the words used in civil projects and assigned numerical values, tokenized the text of all CBS into words defined in the dictionary, converted them into TF-IDF vectors, and determined them by cosine similarity. Additionally, the search success rate increased to nearly 70 % by considering CBS' hierarchical structure and changing keywords. The threshold value for judging similarity was 0.62 (1: perfect match, 0: no match).

Wildfire Detection Method based on an Artificial Intelligence using Image and Text Information (이미지와 텍스트 정보를 활용한 인공지능 기반 산불 탐지 방법)

  • Jae-Hyun Jun;Chang-Seob Yun;Yun-Ha Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.19-24
    • /
    • 2024
  • Global climate change is causing an increase in natural disasters around the world due to long-term temperature increases and changes in rainfall. Among them, forest fires are becoming increasingly large. South Korea experienced an average of 537 forest fires over a 10-year period (2013-2022), burning 3,560 hectares of forest. That's 1,180 soccer fields(approximately 3 hectares) of forest burning every year. This paper proposed an artificial intelligence based wildfire detection method using image and text information. The performance of the proposed method was compared with YOLOv9-C, RT-DETR-Res50, RT-DETR-L, and YOLO-World-S methods for mAP50, mAP75, and FPS, and it was confirmed that the proposed method has higher performance than other methods. The proposed method was demonstrated as a forest fire detection model of the early forest fire detection system in the Gangwon State, and it is planned to be advanced in the direction of fire detection that can include not only forest areas but also urban areas in the future.

SIEM System Performance Enhancement Mechanism Using Active Model Improvement Feedback Technology (능동형 모델 개선 피드백 기술을 활용한 보안관제 시스템 성능 개선 방안)

  • Shin, Youn-Sup;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.896-905
    • /
    • 2021
  • In the field of SIEM(Security information and event management), many studies try to use a feedback system to solve lack of completeness of training data and false positives of new attack events that occur in the actual operation. However, the current feedback system requires too much human inputs to improve the running model and even so, those feedback from inexperienced analysts can affect the model performance negatively. Therefore, we propose "active model improving feedback technology" to solve the shortage of security analyst manpower, increasing false positive rates and degrading model performance. First, we cluster similar predicted events during the operation, calculate feedback priorities for those clusters and select and provide representative events from those highly prioritized clusters using XAI (eXplainable AI)-based event visualization. Once these events are feedbacked, we exclude less analogous events and then propagate the feedback throughout the clusters. Finally, these events are incrementally trained by an existing model. To verify the effectiveness of our proposal, we compared three distinct scenarios using PKDD2007 and CSIC2012. As a result, our proposal confirmed a 30% higher performance in all indicators compared to that of the model with no feedback and the current feedback system.

Reinforcement Learning Model for Mass Casualty Triage Taking into Account the Medical Capability (의료능력을 고려한 대량전상자 환자분류 강화학습 모델)

  • Byeongho Park;Namsuk Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.44-59
    • /
    • 2023
  • Purpose: In the event of mass casualties, triage must be done promptly and accurately so that as many patients as possible can be recovered and returned to the battlefield. However, medical personnel have received many tasks with less manpower, and the battlefield for classifying patients is too complex and uncertain. Therefore, we studied an artificial intelligence model that can assist and replace medical personnel on the battlefield. Method: The triage model is presented using reinforcement learning, a field of artificial intelligence. The learning of the model is conducted to find a policy that allows as many patients as possible to be treated, taking into account the condition of randomly set patients and the medical capability of the military hospital. Result: Whether the reinforcement learning model progressed well was confirmed through statistical graphs such as cumulative reward values. In addition, it was confirmed through the number of survivors whether the triage of the learned model was accurate. As a result of comparing the performance with the rule-based model, the reinforcement learning model was able to rescue 10% more patients than the rule-based model. Conclusion: Through this study, it was found that the triage model using reinforcement learning can be used as an alternative to assisting and replacing triage decision-making of medical personnel in the case of mass casualties.

The Power Line Deflection Detect System using Computer Vision (컴퓨터 비전을 사용한 송전선 늘어짐 감지 시스템)

  • Park, EunSoo;Roh, Hyun-Joon;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.167-169
    • /
    • 2018
  • 2016 한국 전력 통계에 따르면 약 900 만개의 지지물과 130 만 킬로미터의 전력 분배용 전력선이 있으며 많은 인적 자원과 엄청난 양의 송전선에 대한 유지보수가 필요하다. 현재 전선 늘어짐에 대한 고장진단 기법 중 하나로 이동 중인 자동차에 부착된 비전 시스템을 이용한 방법이 있다. 이 방법에서 사용된 송전선 탐지 방법을 보완하여 송전선을 이미지상에서 추출한다. 본 논문에서는 인공지능을 사용하여 지지물 을 탐지하고, 지지물 사이의 거리가 멀다는 점을 극복하기 위하여 공통 특징점들이 있는 이미지들을 하나의 이미지로 붙이는 파노라마 기술을 사용하여 지지물 사이의 거리를 극복하며, 제안하는 방법으로 송전선을 탐지하고 늘어짐을 판단하는 시스템을 제안한다.

  • PDF

Classification for the Breakage of the Package Boxes using a Deep Learning Network (딥러닝 네트워크를 통한 택배 상자 파손 분류)

  • Kim, Eun-Kang;Kim, Seong-Ha;Sin, Hye-Seon;Kim, So-Yeon;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.250-253
    • /
    • 2022
  • 본 설계에서는 택배의 현재 상태를 확인 후 택배 상자의 파손 유무를 분류하고 사진으로 제공하는 기술을 제안하였다. 본 설계에서는 딥러닝 네트워크를 통해 훈련된 인공지능을 통해 일반 상자와 파손 상자를 분류하고, 파손 상태일 시 소비자와 택배사에 알람으로 보고하는 것을 주 기능으로 하고 있다. 딥러닝 네트워크 훈련을 위해 약 1,000장의 데이터셋을 직접 구성하고 학습하였다. 본 설계에서 사용된 택배 상자 파손 여부 분류기의 분류 정확도는 93.33%이고, 이 분류 성능은 택배 상자의 상태를 분류하는 데 있고, 정확도의 분류 성능이라고 할 수 있다.

  • PDF

Crowd counting based on Deep Learning (딥러닝 기반 인원 계수 방안)

  • Sim, Gun-Wu;Sohn, Jung-Mo;Kang, Gun-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.17-20
    • /
    • 2021
  • 본 연구는 인원 계수에 딥러닝 알고리즘을 적용한다. 인원 계수는 안전 관리 분야, 상업 분야에 적용될 수 있다. 예를 들어, 건물 내 화재 발생 시, 계수된 인원을 활용하여 인명 피해를 최소화할 수 있다. 다른 예로, 유동인구 데이터를 기반으로 상권을 분석하여 경제적 효율성을 극대화할 수 있다. 이처럼 인원 데이터의 중요성이 증가함에 따라 인원 계수 연구도 활발하다. 그 예로, 객체 탐지(Object Detection) 같은 딥러닝 기반 인원 계수, 센서 기반 인원 계수 등이 있다. 본 연구에선 딥러닝 알고리즘인 VGGNet을 사용하여 인원을 계수했다. 결과로 Mean Absolute Percentage Error(이하 MAPE)는 약 5.9%의 오차율을 보였다. 결과 확인 방법으로는 설명 가능한 인공지능(XAI) 알고리즘 중 하나인 Grad-CAM을 적용했다.

  • PDF

Design and Implementation of Big Data Streaming Query Processing System for Realtime Power Plant Sensor data (실시간 발전소 시설 장비 센서 데이터에 대한 빅데이터 스트리밍 질의 처리 시스템 설계 및 구현)

  • Um, Jung-Ho;Yu, Chan Hee;Sarda, Komal;Park, Kyongseok
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.88-91
    • /
    • 2020
  • 발전 시설은 연간 무중단으로 운영되어야 하고, 고장이 발생하면 손해가 막대하기 때문에 발전 시설 장비에는 수십만 개의 센서 데이터가 설치되어 있다. 본 논문에서는 효율적인 센서 데이터의 수집과 시설 모니터링 및 고장 예측 등을 위한 빅데이터 스트리밍 질의 처리 시스템을 설계 및 구현하였다. 또한 실시간 데이터 수집의 효율적인 관리를 위해 인코딩 방식을 설계하였으며, 데이터 전송 성능을 측정하여 문자열로 데이터를 전송하는 것보다 평균 12%, 최대 32% 데이터 처리 성능이 향상됨을 보였다. 또한, 스트리밍 데이터에 대한 윈도우 질의 처리 성능을 측정하여 약 0.97초의 평균 집계 질의 처리 시간이 소요됨을 확인하였다. 향후에는 고장 감지를 위한 인공지능 추론 모델을 제안하는 빅데이터 스트리밍 질의 처리 시스템에 적용할 예정이다.

Pre-trained Language Model for Table Question and Answering (표 질의응답을 위한 언어 모델 학습 및 데이터 구축)

  • Sim, Myoseop;Jun, Changwook;Choi, Jooyoung;Kim, Hyun;Jang, Hansol;Min, Kyungkoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.335-339
    • /
    • 2021
  • 기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.

  • PDF