• 제목/요약/키워드: 약통 인식

검색결과 3건 처리시간 0.021초

만능 스마트 약통 (Smart Medication Case)

  • 이주원;고신지;최영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.339-340
    • /
    • 2021
  • 한 첩씩 복용하는 알약은 복용 여부를 정확히 판별하기 어렵다. 그래서 이러한 상황에서 벗어나고자 만든 스마트 약통을 제안하고 있다. 이 스마트 약통은 약의 오남용을 방지하고, 날짜별 복용 여부를 휴대폰 어플로 알려주는 장점을 가지고 있다. 장기간 복용하는 약은 한 번의 내원으로 많은 양의 약을 처방받아 오기 때문에 기억력이 좋지 않은 어른이 사용하기에 유용하다. 처방 받은 약통에 있는 QR코드를 최초 입력함으써 약 3일 정도의 데이터 수집기간을 통해 평균 복용시간을 인식하고, 평균 복용시간을 인식한 후에 약 먹을 시간을 알려주는 기능을 탑재하였다. 평상시에는 잠금장치를 통해 걸어 열 수 없게 프로그램을 설정하고, 복용시간에만 잠금장치를 해제하여 환자의 약물 오남용을 막고 안전하게 복용할 수 있을 것이다.

  • PDF

SIFT 기반의 약통 분류 시스템 (Medicine-Bottle Classification Algorithm Based on SIFT)

  • 박길흠;조웅호
    • 한국산업정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.77-85
    • /
    • 2014
  • 약화 사고 방지를 위한 약통 분류 알고리즘은 약통의 회전, 크기변화, 위치 이동 등의 기하학적 변화에 강인하여야 한다. 본 논문에서는 기하학적 변화에 강인한 SIFT(Scale Invariant Feature Transform)을 이용하여 약통을 실시간으로 정확하게 분류하는 알고리즘을 제안한다. 먼저, 약통 분류를 위해서 두드러진 특징으로 약통의 크기 정보인 최외곽 사각형을 이용하여 약통을 크기 별로 분류한다. 다음으로 최외곽 사각형내에서 라벨 영역을 추출하고, 회전을 고려한 관심영역을 추출한다. 그리고 추출된 관심영역에 대해 SIFT를 이용하여 약통을 분류한다. 또한 SIFT의 처리 속도를 개선하기 위하여 SIFT의 옥타브 수를 간소화하였다. 250개의 약통 영상에 대해 제안한 알고리즘의 성능을 평가한 결과, 모든 약통에 대해 정확히 분류함을 확인하였다. 또한 SIFT의 피라미드 레벨 간소화에 의해 처리 시간을 2배 이상 향상됨을 확인하였다.

A Research on Cylindrical Pill Bottle Recognition with YOLOv8 and ORB

  • Dae-Hyun Kim;Hyo Hyun Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.13-20
    • /
    • 2024
  • 본 논문은 영상에서 특정 원통형 약통을 식별할 수 있는 모델 이미지 생성 방식을 제시하고 데이터 수집에 대한 기술을 연구한다. 기존 연구들은 객체 인식과 특정 객체 식별이 분리되어 있어 이미지 스티칭(image stitching) 자동화에 적용하기 어려웠으며, 좌표 기반 이미지 추출 방식이 이미지 스티칭 과정에서 객체 영역 외의 정보도 모델 이미지에 포함시키는 문제를 갖고 있었다. 이를 해결하기 위해 본 논문은 최근에 출시된 YOLOv8(You Only Look Once)의 세그멘테이션(segmentation)기법을 수직축 회전하는 약통 영상에 적용하고 특징점 매칭 알고리즘인 ORB(Oriented FAST and Rotated BRIEF)를 활용하여 모델 이미지 생성을 자동화하였다. 연구 결과, 세그멘테이션 기법을 적용할 경우 특정 약통 식별시 인식률이 향상되었으며 특징점 매칭 알고리즘으로 생성된 모델 이미지는 특정 악통을 정확하게 식별해 낼 수 있었다.