• Title/Summary/Keyword: 앤더슨 분류단계

Search Result 1, Processing Time 0.013 seconds

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach (계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -)

  • ;Stephen Egbert;Dana Peterson;Aimee Stewart;Chris Lauver;Kevin Price;Clayton Blodgett;Jack Cully, Jr,;Glennis Kaufman
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.667-685
    • /
    • 2003
  • To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.