• Title/Summary/Keyword: 액화냉동사이클

Search Result 17, Processing Time 0.022 seconds

Characteristics of Cryogenic Cascade Refrigeration Cycle for Liquefaction of Natural Gas with the Pressure Drop of Heat Exchanger (LNG 열교환기의 압력강하에 따른 천연가스 액화용 초저온 캐스케이드 냉동사이클 특성)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Kwag, Jin-Woo;Baek, Seung-Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.756-761
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600 of its standard volume. This gives LNG the advantage in transportation. In this study, the effects of the pressure drop of refrigerant and natural gas in the LNG heat exchanger of cryogenic cascade refrigeration cycle were investigated and then the design criteria for the pressure drop of refrigerant and natural gas of the LNG heat exchanger were proposed. The pressure drop of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work and COP of cryogenic cascade liquefaction cycle.

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of the Natural Gas [2]: An Application to the Multistage Cascade Refrigeration Cycle (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [2]: 다단 캐스케이드 냉동 사이클에 적용)

  • Cho, Jung-Ho;Kim, Yu-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1013-1019
    • /
    • 2011
  • In this paper, simulation works for a multi-stage cascade refrigeration cycle using propane, ethylene and methane as refrigerants have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. For the multi-stage refrigeration cycle, three-stage refrigeration was assumed for propane refrigeration cycle, two-stage refrigeration for ethylene refrigeration cycle and three-stage refrigeration for methane refrigeration cycle. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.71% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion and 0.433 kW of compression power was consumed for the liquefaction of 1.0 kg/hr of natural gas.

Simulation Study of Hydrogen Liquefaction Process Using Helium Refrigeration Cycle (헬륨 냉동사이클을 이용한 수소액화 공정모사 연구)

  • Park, Hoey Kyung;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Compared to gaeous hydrogen, liquid hydrogen has approximately 1/800 volume, 800 times higher volumetric energy density at the same pressure, and the advantage of lower explosion risk and easier transportation than gaseous hydrogen. However, hydrogen liquefaction requires larger scale facility investment than simple compression storage method. Therefore, the research on energy-saving hydrogen liquefaction processes is highly necessary. In this study, helium/neon (mole ratio 80 : 20) refrigeration cycle was investigated as the main refrigeration process for hydrogen liquefaction. Process simulation for less energy consumption were carried out using PRO/II with PROVISION V10.2 of AVEVA. For hydrogen liquefaction, energy consumption was compared in three cases: Using a helium/neon refrigerant cycle, a SMR+helium/neon refrigerant cycle, and a C3-MR+helium/neon refrigerant cycle. As a result, the total power consumptions of compressors required to liquefy 1 kg of hydrogen are 16.3, 7.03 and 6.64 kWh, respectively. Therefore, it can be deduced that energy usage is greatly reduced in the hydrogen liquefaction process when the pre-cooling is performed using the SMR process or the C3MR process, which have already been commercialized, rather than using only the helium/neon refrigeration cycle for the hydrogen liquefaction process.

A Study on the Simulation of LPG Refrigeration Cylcle Using Pure Propane Refrigerant (순수한 프로판 냉매를 사용한 액화석유가스 냉동사이클의 모사에 관한 연구)

  • Cho Jung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.38-42
    • /
    • 2006
  • In this study, a simulation technology for refrigeration cycle which can liquefy and store liquified petroleum gas (LPG) using pure propane as a refrigerant has been introduced. Cooling water as the second cooling medium was used for the liquefaction of propane. Peng-Robinson equation of state was used for the entire refrigeration cycle. A new alpha formulation proposed by Twu et al. was used for the more accurate prediction of vapor pressures of pure propane component and LPG constituents. API method for the accurate estimation of liquid densities of propane and LPG was used instead of using Peng-Robinson equation of state. PRO/II with PROVISION release 7.1, a general purpose chemical process simulator was used for the simulation of the overall refrigeration system. Through this work, we can successfully simulate the real propane refrigeration plant operating at domestic site.

  • PDF

Efficiency and Exergy Analysis of New Liquefaction Cycles Applied for LNG FPSO (LNG FPSO에 적용가능한 신액화 사이클의 효율 및 엑서지 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kwag, Jin-Woo;Shim, Gyu-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.574-579
    • /
    • 2012
  • This paper presents the new cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2$. The performance and exergy of cascade liquefaction cycles are analyzed using HYSYS software and then confirmed the possibility of these cycles for LNG-FPSO ship. From the comparison of performance and exergy loss of these cycles, the cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ showed higher performance and the cycle using $CO_2-N_2$ presented higher exergy loss. The cascade liquefaction cycle using $CO_2-N_2$ is lower efficiency and higher compressor work compared to the optimized cascade liquefaction cycle using $C_3H_8-C_2H_4-C_1H_4$. But, if the efficiency of $N_2$ cycle in these liquefaction cycles is improved, it is possible to apply the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ and $CO_2-N_2$ to LNG-FPSO ship due to the simple composition device of these cycles.

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of Natural Gas [1] (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [1])

  • Kim, So-Hee;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.552-558
    • /
    • 2011
  • In this paper, simulation works for a cascade refrigeration cycle using propane, ethylene and methane as a refrigerant have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.64% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion.

Study on Simulation and Optimization of C3MR Liquefaction Cycle (천연가스 액화공정의 C3MR 냉동사이클의 공정모사와 최적화에 관한 연구)

  • Park, Chang Won;Cha, Kyu Sang;Lee, Sang Gyu;Lee, Chel Gu;Choi, Keun Hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • The LNG liquefaction plant which have a higher value-added business in the LNG value chain takes about 35% of total cost. Liquefaction process is core technology of liquefaction plant. Almost all of cost which was consumed from the liquefaction plant, using for operation energy of liquefaction process. The cost can be reduced by increasing efficiency of liquefaction cycle. C3MR(propane pre-cooled, mixed refrigerant cycle) which liquefies NG using propane and MR cycle has the high efficiency, so C3MR is mostly used liquefaction process in LNG industry. In this study, process simulation and analysis were performed for C3MR process. C3MR process variables were found through this simulation and analysis, and then the process optimization was performed. It is considered that the results of process analysis, process variables and process optimization study can be utilized to develope new liquefaction process.

Estimation of the Ammonia Refrigeration Cycle Using LNG Cold Heat (액화천연가스 냉열을 활용한 암모니아 냉동 사이클의 추산)

  • NOH, SANGGYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.357-362
    • /
    • 2018
  • In this study, computer simulation and optimization works have been performed for a refrigeration cycle using ammonia as a refrigerant and also how much power was saved when the liquefied natural gas cold heat is replaced for the refrigeration cycle. PRO/II with PROVISION release 10.0 from Schneider electric company was used, and Peng-Robinson equation of the state model was selected for the modeling of the refrigeration cycle and LNG cold heat utilization process.

기술현황분석 - 쥴톰슨냉동 기술

  • Hong, Yong-Ju;Go, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je
    • 기계와재료
    • /
    • v.23 no.3
    • /
    • pp.156-163
    • /
    • 2011
  • 쥴톰순 냉동기는 스터링 냉동기, GM 냉동기, 스터링형 및 GM형 맥동관 냉동기 등 기계적 극저온냉동기에 비해 단순한 구조, 수 초의 급속한 냉각특성을 장점으로 중대형의 가스액화사이클 뿐만 아니라 적외선검출기의 급속냉각, 저온수술 등 다양한 분야에서 널리 사용되어지고 있다. 일반적으로 100K 이하의 작동온도 및 수 초 수준의 빠른 냉각을 요구하는 적외선검출기의 냉각을 위해서는 수 백기압 이상 고압의 질소 및 아르곤 가스를 사용하는 쥴톰슨 냉동기가 주로 사용되고 있다. 쥴톰슨 냉동기는 핀-관(fin-tube) 형태의 열교환기와 열교환기의 구조적 기반을 제공하는 멘드렐(mandrel), 쥴톰슨 노즐 등으로 구성되며, 열교환기의 열전달 성능 및 유량조절기구의 특성은 냉동기 저온부의 냉각온도, 냉각시간 및 운전시간에 큰 영향을 미친다.

  • PDF

A Study on the Price Evaluation Per 1 Ton of Liquefied Natural Gas According to the Refrigerants Supply Temperature in the Electric Refrigerator (전기식 냉동기에서 냉매의 공급온도에 따른 액화천연가스의 톤당 냉열 가격 산출에 대한 연구)

  • KIM, YONUNGWOO;PARK, ILSOO;CHO, JUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.473-477
    • /
    • 2019
  • In this paper, cold heat price contained in the 1 ton/h of LNG has been evaluated using PRO/II with PROVISION release 10.2 from Aveva company when LNG is used to liquefy several refrigerants instead of using vapor recompression refrigeration cycle. Normal butane, R134a, NH3, R22, propane and propylene refrigerants were selected for the modeling of refrigeration cycle. It was concluded that LNG cold heat price was inversely proportional to the refrigerant supply temperature, even though LNG supply flow rate is not varied according to the refrigerant supply temperature.