• Title/Summary/Keyword: 액체 미립화

Search Result 117, Processing Time 0.023 seconds

Atomization and spray characteristics of liquid fuel (액체연료의 미립화와 분무특성)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.14-18
    • /
    • 1988
  • 액체의 미립화는 액체연료의 연소를 위한 분무, 분무 도장, 농약 살포, 의료기기, 용융 금속의 금속 분말의 제조 등의 여러분야에 널리 이용되고 있다. 특히 연소 기관은 액체 연료의 미립화와 증발 특성에 따라 기관의 연소와 성능은 크게 변화하므로 연소실 내의 연료 미립화 특성의 개선은 매우 중요하다. 미립화에 영향을 미치는 인자에는 연료의 물성과 분사 기구 및 분사 밸브 등의 구조와 분사압력 등은 연료 미립화에 주된 영향을 미치는 요인의 하나가 되고 있다. 여기서는 주로 액체연료의 미립화에 일반적인 기초 사항과 분무 특성의 표시 방법, 측정법에 대하여 기술하기로 한다.

  • PDF

Method and characteristics of liquid atomization (액체 미립화의 방법과 특징)

  • 이충원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.10-16
    • /
    • 1983
  • 액체의 미립화는 기계산업분야 뿐만 아니라, 농약살포, 화학 공학의 분무건조, 반응의 촉진, 분 체제조, 식품공업 등 폭넓게 이용되며 또한 각분야에서 그 필요성이 강조되고 있다. 특히 기계 산업분야에서는 액체연료의 분무연소(boiler, gas turbine, 자동차용engine등) 원자로 노심의 spray cooling, spray drying, spray painting 등 그 이용도는 날로 증가되는 추세에 있다. 액체를 미 립화하는 이유는 각각의 분야나 사용하는 목적에 따라 다르지만, 대별하면 다음과 같다. (1) 액체의 단위 체적당 표면적을 증대시키기 위하여 (2) 직경이 작은 입자의 필요성 (3) 균일한 입경의 액적군을 얻기 위하여 등을 들 수 있다. 액체의 미립화에 대한 요구는 산업의 발당, 대기오염, 생energy 등의 문제가 중요시됨에 따라 다양화되고 있다. 따라서 응용면에서는 atomizer의 성능개선과 설계법, 새로운 미립화방법, 상업에의 분무이용기술, 분무계측법 등의 개발이 필요하게 된다. 액체미립화에서 취급하는 사항은 그 내용에 따라 다음과 같이 분류된다. (1) 액체의 미립화기구 : 기액계면의 불안정성과 분열기구에 관한 것으로, 액체형상으로써 액주, 액막 및 액적으로 나눌 수 있다. (2) 액체의 미립화 방법과 특성 : energy의 종유와 부가방식에 따랄 나누어진다. (3) 합체, 분산, 증발 등 분무의 운동이나 열적거동 (4) 분무입경이나 운동의 계측법과 특성도시 (5) 액체미립화의 각종응용 본보에서는 상기의 각 항목중, 특히 액체의 미립화방법과 분무특성에 대해서만 말하기로 한다.

  • PDF

平面上의 高速平行氣流에 의한 液體微粒化 理論

  • 김광수
    • Journal of the KSME
    • /
    • v.23 no.4
    • /
    • pp.288-294
    • /
    • 1983
  • 고속기류에 의한 수표면의 유통은 호수나 강에서 흔히 볼 수 있는 물리적인 현상으로서 기류의 속도가 증가함에 따라서 수표면에서 액적이 발생하게 되는 이른바 액체미립화 현상(atomization )이 일어나게 된다. 이러한 액체의 미립화는 내연기관에서의 분무연소에서 부터 가정에서 습도를 유지하는 가습기 및 살충제분무기에 이르기까지 그 운용도가 매우 광범위하며 최근에 이르러 액체미립화가 유체역학의 한 부분을 차지하는 단계에까지 이르러 매년 각국에서 미립화에 대한 심포지움이 개최되고 있으며 연구실적면에서는 미국보다도 오히려 가까운 일본에서 미립화에 대한 연구가 더 활발히 진행되고 있는 반면 아직 우리나라에서는 이렇다할 연구가 없으며 미립 화에 관한 논문도 불과 한두 편에 이르는 실정이다. 이러한 중요한 물리적인 현상에 대해 좀더 자세한 이해를 위해서는 액체와 기체의 상호접촉면에서의 정량적인 특성에 대한 연구가 필요하며 이러한 정량적 인자에는 (1) 액막의 평균두께 (2) 액막내의 속도분포, (3) 액막표면의 파고, 파장의 파면구조, (4)기체중의 속도분포 등이 있다.

  • PDF

2유체 전단 동축형 인젝터의 미립화 및 분무특성에 관한 실험적 연구

  • Jeon, Chang-Hwan;Han, Jae-Seob;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.1-1
    • /
    • 1999
  • 2유체 동축인젝터(coaxial twin fluid injector)는 액체산소와 액체수소를 추진제로 사용하는 SSME(Space Shuttle Main Engine)이나 유럽의 Arian 5 Vulcain 엔진과 같은 저온추진제 엔진에 널리 사용되고 있다. 추진제를 미립화 시키는 장치로서 사용하는 다른 여러 형태의 인젝터에 비교할 때 저속의 액체산화제 주위에 고속의 가스연료가 분사됨으로서 발생되는 전단력에 의해 추진제가 미립화되는 특징을 가지며, 이러한 메카니즘은 매우 복잡하여 아직까지 정확히 규명되지 못하고 있는 실정이다.

  • PDF

Spray Characteristics for Recess Length in a Swirl Coaxial Injector to use GCH4/LOx (가스메탄/액체산소를 추진제로 하는 스월 동축형 인젝터의 리세스 길이에 따른 분무특성)

  • Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.20-23
    • /
    • 2011
  • The spray and atomization characteristics of swirl coaxial injectors which use gas methane and LOx as propellants are investigated experimentally with a recess length variation. Mass distribution and spray angle are measured by a patternator and droplet size to find atomization characteristics are measured by GSV(Global Size and Velocity) system. As a result, when the liquid sprayed, the spray angle decreased and the atomization characteristic was improved with the recess length increase. When the gas and liquid injected simultaneously, the spray angle was decreased and the atomization characteristic was improved comparing to only the liquid injection.

  • PDF

PLIF 기법을 이용한 액체 로켓용 F-O-O-F 인젝터의 혼합특성 연구

  • 정기훈;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.2-2
    • /
    • 2000
  • 액체연료를 사용하는 엔진의 인젝터에 대한 연구는 연소효율에 중대한 영향을 미치는 분무 액적의 크기 및 분포 특성 연구에 초점을 두어왔다. 그러나 액체 로켓 엔진은 고온, 고압의 연소실 내에서 액체상태의 연료 및 산화제 액적이 매우 빠르게 기화되기 때문에, 미립화 특성 보다는 연료와 산화제의 혼합특성이 연소효율을 결정하는 변수로 작용하게 된다. 또한 분사된 액체 추진제는 미립화 단계 이전에 기화되어 초기 화염을 형성하므로, 분사 직후의 연료/산화제의 혼합과정을 이해하는 것은 상당히 중요하다.

  • PDF

Atomization Effect of Supersonic Liquid Jet by a Nozzle L/d of Subscale High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 L/d에 따른 초음속 액체 제트의 미립화 특성)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.196-199
    • /
    • 2011
  • Subscale high-pressure injection system which use two-stage light gas gun composed with high-pressure tube, pump tube and launch tube can make supersonic liquid jet. The supersonic liquid jet enhances droplet atomization by shockwave in front of the jet. In this study, the experiments was executed to identify the atomization characteristics of the supersonic liquid jet using straight cone nozzle. SMD which presents the atomization characteristics was decreased from $151.2{\mu}m$ to $52.25{\mu}m$ by increasing of L/d.

  • PDF

단요소 충돌형 분사기에 의한 액체추진제 연소성능의 수치적 연구

  • 황용석;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.2-2
    • /
    • 1999
  • 액체추진제 로켓엔진에서 분사기의 미립화 및 혼합 특성과 그에 따른 연소 특성은 성능과 안정성을 결정하는 중요한 파라미터이며 분사기는 제한된 설계 조건하에서 최대의 열방출율을 발휘하도록 설계되어야 한다. 여기서 연소효율은 연료와 산화제의 혼합특성과 충돌 분무의 미립화의 정도에 의해 결정되므로 충돌 분무 유동성의 혼합, 미립화 특성과 이에 따른 인조성능 특성을 명확하게 밝힘으로써 최대 엔진성능을 위한 설계가 가능하게 된다. 분사기의 설계에는 분사요소형태, 분사공의 형상 및 유동시스템 등이 포함되며 특히 분사요소 형태의 선택에는 추진제, 연소실냉각방법, 연소실 형상, 자동조건 및 엔진의 수명 등이 중요한 제한조건으로 고려된다. 이런 형태의 분사 요소들 중, 충돌형 분사기는 저장성 추진제를 사용하는 중, 저추력의 액체추진제 로켓엔진에 주로 사용된다. 이 분사형태는 미립화 성능이 높지 않고, 분사공 직경 및 운동량비에 따른 혼합성능이 만감하며 blow apart 등에 의한 열부하 혹은 안정성에 대한 문제가 있으나 양호한 혼합효율, 신뢰성과 제작의 용이함으로 인하여 광범위하게 사용된다.

  • PDF

Atomization Technology of Liquid Fuels (액체연료의 미립화 기술(1))

  • 류정인
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.59-68
    • /
    • 1993
  • 본 강좌는 지금까지 밝혀진 미립화 방법과 그 실용예를 언급하고 초음파 미립화 기구를 소개하고자 한다. 1. 서론. 2. 미립화 방법과 그 실용예. 3. 음파. 4. 음압 level과 음의 강도 level의 관계. 5. 초음파의 반사, 투과 및 굴절. 6. 정상파.

  • PDF