• Title/Summary/Keyword: 액체염소

Search Result 22, Processing Time 0.019 seconds

Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene (실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향)

  • Lee, Jeong Suk;Lee, Chang Il;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Three amorphous silicas and SBA-15 were employed as supports, which were capable of confining ionic liquid (IL) and metallocene in the nanopore. Ionic liquid functionalized silica was prepared by the interaction between the chloride anions of 1,3-bis(cyanomethyl)imidazolium chloride and the surface OH groups. Metallocene and methylaluminoxane (MAO) were subsequently immobilized on the ionic liquid functionalized silica for ethylene polymerization. The metallocene supported on ionic liquid functionalized XPO-2412 and XPO-2410 having a larger pore diameter compared to SBA-15 showed higher activity than that of using supported catalyst without ionic liquid functionalization. However, the activity of metallocene supported on SBA-15 decreased after ionic liquid functionalization, suggesting that the diffusion of ethylene monomer and cocatalyst to the active site of nanopore was restricted during ethylene polymerization. This could be resulted from significant reduction of the pore diameter due to the immobilization of ionic liquid and $(n-BuCp)_2ZrCl_2$ and MAO. The effect on polymerization activity in accordance with the concentration of hydroxyl groups on the surface was also investigated. The polymerization activity increased as the concentration of hydroxyl groups on amorphous silica increased. The polymerization activities of metallocene supported on silica showed the similar trend after ionic liquid functionalization.

Determination of alkylphenol ethoxylate in water by high performance liquid chromatography/electrospray ionization/mass spectrometry (HPLC/ESI/MS를 이용한 물 중의 알킬페놀에톡실레이트 분석)

  • Lee, Jeongae;Park, Song-Ja;Chung, Bong Chul
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.263-270
    • /
    • 2004
  • A method is described for the analysis of short-chain alkylphenol ethoxylates (APEOs), 4-octylphenol-di-ethoxylate (OP2EO) and 4-nonylphenol-di-ethoxylate (NP2EO), in drinking water or wastewater using reversed phase high-performance liquid chromatography with electrospray ionization mass spectrometry. The solvent system was water and methanol containing $10{\mu}M$ trifluoroacetic acid as an ionization solvent. We acidified 1 L of water samples to less than pH 2 with concentrated $H_2SO_4$ and loaded onto Sep-Pak $C_{18}$, and eluted with acetone. The calibration of OP2EO and NP2EO was performed for the concentration range from 20 to 500 ng/L and the correlation coefficients were 0.999 and 0.990, respectively. The limits of detection were 20 ng/L (OP2EO) and 50 ng/L (NP2EO) at a signal-to-noise ratio of 3. Accuracy and precision of this analytical method were 85.8 ~ 122.1% and 8.2 ~ 18.8%, respectively. The proposed method allowed a sensitive and rapid detection of OP2EO and NP2EO and it could be applied for monitoring of APEOs from environmental samples.