• Title/Summary/Keyword: 액정 유화제

Search Result 15, Processing Time 0.018 seconds

A Study on the Formation of Liquid Crystalline Structure depend on pH Change in O/W Emulsion (O/W형 유화상에서 pH변화에 따른 액정구조의 생성에 관한 연구)

  • Kim, Ji-Seop;Hong, Jin-Ho;Jeon, Mi-Kyeong;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.545-554
    • /
    • 2017
  • This study is concerned with the stability of liquid crystal forming emulsifier with localized depend on change of pH using liquid crystal forming agent of advanced company. The liquid crystal emulsifying agent was localized using Sugar Crystal-LC (bio-tech Co., Ltd., Korea), and comparative samples were measured by using Nikkomulese-LC (Nikko Camicarls, Japan) and Alacel-LC (Croda Camicarls, UK). Liquid crystal formation was confirmed microscopically to show the formation of liquid crystal structure at acidic (pH=4.2), neutral (pH=7.0) and alkaline (pH=11.7). The particles of the liquid crystal were observed with a polarizing microscope according to the stirring speed. The stirring time was all the same for 3 minutes with a homo-mixer, and the stirring speed was increased to 2500 rpm, 3500 rpm and 4500 rpm to observe the liquid crystal state. As a result, it was found that the Korean surfactant was more stable and clear liquid crystal structure was formed than the two foreign acids. In the case of the UK in acid zone, the emulsion particle size was uniform and unstable. In the case of Japanese surfactant, it has similar structure and performance to those of localized Korean. It was found that Korean surfactant had superior emulsifying performance in acid zone compared with foreign products. It is possible to develop various formulations such as liquid crystal cream, lotion, eye cream, etc. using Sugar Crystal-LC emulsifier as an application cosmetic field, and it is expected that it can be widely applied as emulsifying technology for skin care external application in the pharmaceutical industry and the pharmaceutical industry as well as the cosmetics industry.

The Study of Microemulsion with PEG-8 Capryliccapric Glycerides and Polyglyceryl-3 Diisostearate (PEG-8 Capryliccapric Glycerides와 Polyglyceryl-3 Diisostearate를 이용한 마이크로 에멀젼에 관한 연구)

  • Kim, Kyung-Min;Kim, Sung-Ho;Lee, Geun-Su;Kang, Ki-Choon;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.3
    • /
    • pp.209-217
    • /
    • 2012
  • One of the popular formulations is microemulsion in cosmetics. A kind of microemulsions is liquid crystal emulsion. Liquid crystal emulsion is used by wrapping functional ingredients. As the meaning of the name, Liquid crystals (LCs) are a state of matter that has properties between those of a conventional liquid and those of a solid crystal. There are various types of Liquid crystals (LCs) consisting of micelles or two layer structures of surfactants. Recently, microemulsion has been studied to improve its stability in thermodynamics of colloid science field. In this study, we prepared the microemulsion with PEG-8 Capryliccapric Glycerides and Polyglyceryl-3 Diisostearate. We studied the microemulsion with different oil types and different and cosurfactant content ratio. Also, the aim of this study is to develop a facial oil or a cleansing oil containing liquid crystal emulsion with functional ingredients.

The Preparation of Multi-Lamellar Emulsion Which Containing Pseudoceramide(PC-9) (유사 세라마이드(PC-9)를 함유한 다중 층상 유화물의 제조)

  • Park, Byeong-Deog;Yeom, Jong-Kyung;Lee, Myung-jin;Kim, Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.55-68
    • /
    • 1999
  • A muti-lamellar emulsion containing a pseudoceramide, N-Ethanol-2-myristyl/ palmityl-3-oxostearmide/arachidamide(PC-9) has been prepared and its efficacy evaluation has been investigated. In order to prepare a muti-lamellar emulsion, first, the gram ratios of PC-9, fatty acid and cholesterol on the phase diagram to be capable of forming their lamellar liquid crystal structures were determined and secondly, the multi-lamellar emulsion was preprared using glyceryl monostearate and polyoxyethylene glyceryl monosteartate as emulsifers together with above mentioned pseudo-stratum corneum lipid components. Besides natural oils such as olive oil had a tendency to build up the multi-lamellar emulsion. And according as the amount of oil increased in the emulsion, it was observed that the optical anisotropy of “Maltese Cross” which was a typical configuration of multi-lamella mesophase texture diminished. In the dried state of the multi-lamella emulsion, it was examined to transform its emulsion phase into a lamella liquid crystal one. And finally, when the emulsion was applied into a human skin, it was investigated that it had effectiveness in reducing transepidermal water loss (TEWL) of the skin.

  • PDF

Changes in Rheological Properties of O/W Emulsions according to the Type of Nonionic Surfactant and Emulsion Stabilizer (비이온 계면활성제, 유화안정제 종류에 따른 O/W 유화 제형의 유변학적 특성 변화)

  • Choi, Joong Seok;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.415-420
    • /
    • 2019
  • To investigate the effect of nonionic surfactant and emulsion stabilizer on O/W emulsions, various emulsion formulations with different types of nonionic surfactants and emulsion stabilizers were prepared and their rheological properties were compared. In this study, polysorbate 60 (Tween 60), PEG-60 hydrogenated castor oil (HCO 60), octyldodeceth-16 (OD 16), and ceteareth-6 olivate (Olivem 800) were used as hydrophilic nonionic surfactants, whereas cetyl alcohol, glyceryl monostearate, and stearic acid as emulsion stabilizers. Phase separation occurred only in the emulsion formulation with octyldodeceth-16 and all other emulsion formulations maintained a stable phase. The viscosity, hardness, and creaminess of emulsion formulation using a mixture of ceteareth-6 olivate and cetyl alcohol were the highest, and the emulsified droplet size was also the largest. These results are due to the formation of a network structure texture with the development of a large amount of liquid crystal in the O/W emulsion. In this formulation, the value of elastic modulus was large and the thixotropic behavior, in which the viscosity varies with the history of external force, was observed.

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants 1. The Phase Behavior and Flow Properties of O/W Emulsion Prepared with the Inversion Emulsification Method (혼합비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성 1. 반전유화법을 이용한 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.196-203
    • /
    • 1993
  • Emulsions were prepared with the inversion emulsification method which adopted the agent-in-oil method-dissolving the mixed surfactants composed of the glycerin monostearate, polyoxyethylene(100) monostearate, and polyoxyethylene(20) sorbitan monostearate into mixtures of liquid paraffin and beeswax, and adding the aqueous solution of propylene glycol, gradually-and then their phases and viscosities behaviors in the emulsifying process were investigated. The fine and homogeneous o/w emulsions were formed in the HLB region (HLB 10.1~12.3), showing liquid crystalline phase and white gel phase in the emulsifying process. The phase inversion steps in the emulsifying process appeared as follows, i.e., oil continuous phase${\rightarrow}$liquid crystalline phase${\rightarrow}$white gel phase${\rightarrow}$o/w emulsion. Shear rate-shear stress curves of the prepared emulsions had the yield values which pointed out the existence of inner structure between emulsion particles, and the hysteresis loop which showed that the inner structure wasbroken irreversibly by the shear. The area of hystersis loop, an index of breakdown of inner structure, was increased with the decreasing of the HLB value of emulsifier, Shear time-shear stress curves showed the time dependence of plastic viscosity, and the relaxation time in time thinning behavior(${\lambda}$) indicated that the stability of emulsions prepared with the inversion emulsification method was decreased with the increasing of HLB values of emulsifier and was higher than that of emulsions prepared by homomixer.

  • PDF

A Study on the Moisturizing Effect and Preparation of Liquid Crystal Structures Using Sucrose Distearate Emulsifier (슈크로오스디스테아레이트를 사용한 액정구조의 생성과 보습효과에 관한 연구)

  • Kwak, Myeong-Heon;Kim, In-Young;Lee, Hwan-Myung;Park, Joo-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • This study is to make the liquid crystalline structure using sucrose distearate (Sucro-DS) emulsifier to create the hydrophilic type oil-in-water (O/W) emulsion, the droplets of the emulsion having a structure of a multi-lamellar structure. We have studied the physicochemical properties of Sucro-DS using those techniques. And it has been studied in the emulsion performance. In order to form the liquid crystalline structure applying 3 wt% of Sucro-DS, 5 wt% of glycerin, 5 wt% of squalane, 5 wt% of capric/caprylic triglyceride, 3wt% of cetostearyl alcohol, 1wt% of glyceryl mono-stearate, 78 wt% of pure water in mixture having the lamellar structure of stable multi-layer system was found to formed. By applying them, they were described how to create an unstable active material encapsulated cream. Further, the moisturizing cream was studied using this technique. It reported the results to the skin improvement effect by the human clinical trials. The pH range to produce a stable liquid crystal phase using a Sucro-DS was maintained in 5.2~7.5. In order to increase the stability of the liquid crystal, it was when behenyl alcohol containing 3 wt%, the hardness at this time was 13 kg/mm,min. Viscosity of the same amount was 25,000mPas/min. After a test for the effects of the emulsions, the concentration of 6 wt% Sucro-DS is that was appropriate, the particle size of the liquid crystal was 4~6mm. It was observed through a microscope analysis, reliability of the liquid crystal changes for 3 months was found to get stable at each $4^{\circ}C$, $25^{\circ}C$ and $45^{\circ}C$. In clinical trial test, before applying a moisturizing effect it was $13.4{\pm}7%$. Moisturizing cream liquid crystal was not formed in $14.5{\pm}5%$. Therefore, applying than ever before could see the moisture about 8.2% was improved. On the other hand, it was the moisturizing effect of the liquid cream is $19.2{\pm}7%$. The results showed that 43.3% improvement than that previously used. Applications fields, Sucro-DS emulsifier used liquid cream, lotion, eye cream and a variety of formulations can be developed, as well as the cosmetics industry is expected to be wide fields in the application of the external preparation for skin emulsion technology in the pharmaceutical industry and pharmaceutical industry.

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants(II) The Phase Behavior and Flow Properties of O/W Emulsion According to the Addition of the Long Chain Alcohols (혼합 비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성(II) 고급 알코올의 첨가에 따른 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.423-431
    • /
    • 1993
  • Long chain alcohols, the mixtures of 1-hexadecanol/1-octadecanol, were used as cosurfactants for O/W emulsion prepared with glycerol monostearate/POE(100) monostearate mixed nonionic surfactants, and the phase behavior and flow properties of O/W emulsions were observed. The transition temperature of long chain alcohol was varied with the composition of 1-hexadecanol/1-octadecanol and had the lowest value when the mixed ratio of 1-hexadecanol/1-octadecanol was 2/1. The liquid crystalline phase was formed as the addition of long chain alcohol and the secondry droplet, the flocculate of the emulsion particles, was made, and thus the viscosity of the emulsion was increased. When the temperature of emulsion system was under the transition temperature of long chain alcohol, the mobility of hydrocarbon group of long chain alcohol was restricted, and thus gel structure was formed and the viscosity of the the O/W emulsion was increased, but along with the time, the liquid crystalline phase was disappeared and the viscosity of emulsion was decreased. Long chain alcohol/nonionic surfactants/water formed the liquid crystalline phase when the long chain alcohol was added above the saturation point of solution(2 wt% in this experoment), and the secondry droplet didn't formed when the long chain alcohol was added more than a certain amount (10 wt% in this experiment).

  • PDF

The Phase Behavior of Ternary System Containing Polysorbate Nonionic Surfactants (폴리솔베이트 비이온성계면활성제를 함유한 3성분계의 상거동)

  • Jeong, Jin-Gi;Shin, Do-Keun;Lee, Jin-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.617-623
    • /
    • 1997
  • In this study, the mechanism on the phase behavior of polysorbate nonionic surfactants was investigated. In the ternary system containing water, hexanol as a polar oil and surfactant, the phase behaviors ranging from micellar region to occurrence of liquid crystal phase were observed by crossed microscope. As results, fine mosaic texture of liquid crystal phase and other phases were examined in the range of 20~70 wt%. This range if thought to give information about the basic data for the formulation of more stable emulsifying systems or dispersed systems. According to the alkyl chain length, three phase region diminished, whereas two phase range increased without an observation of the anisotropic liquid crystalline phase.

  • PDF

Liquid Crystalline Technology of Cosmetic Industry and Moisturizing Effect of Skin (화장품 산업의 액정기술과 피부보습효과)

  • 김인영;조춘구;유희창
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.279-294
    • /
    • 2004
  • This study described about a liquid crystalline technology that is used in cosmetics industry. Various intermediate phases may exist between solid and liquid. At high surfactant concentration, several liquid crystalline phases can be made to have formed. Although molecular arrangement with crystallization is not regular, it is known that more relative regular state is liquid crystalline or meso-phase than liquid phase. Usually, it described in detail about manufacturing method that explained about a kind of liquid crystalline technology in cosmetics, a new liquid crystalline technology, and makes liquid crystalline. Specialty, it introduced about kind of special an emulsifier to form liquid crystalline. There were hydrogenated lecithin, ceramide, dipalmitoylhydroxyproline, DEA-cetyl phosphate, Gemini-surfactant in representative raw material to form liquid crystalline. Liquid crystalline extent that used polarization microscope to observe formation, and appears best from 400times, 600times, 1,000times well appeared. Also, droplet particle size that liquid crystal is made best 1.0-10.0$\mu\textrm{m}$ be. General emulsion more than superior result that measures the skin moisturizing effect to take advantage of liquid crystalline technology of vitamin was seen. As presence at a clinical result, wave and general emulsion more than superior result (more than 20%) that measures skin moisturizing effect about liquid crystalline of vitamin B$\_$5/ were seen (ANOMA t-test, p<0.05)

Development and Prospect of Emulsion Technology in Cosmetics (화장품에서 유화기술의 발전 및 전망)

  • Kyong, Kee-Yeol;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.209-217
    • /
    • 2006
  • Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.