• Title/Summary/Keyword: 액적입경분포

Search Result 16, Processing Time 0.019 seconds

A study on the spray characteristics of a coaxial nozzle by LDV measurement (LDV계측에 의한 동축노즐의 분무특성 연구)

  • 윤석주;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1613-1620
    • /
    • 1990
  • For the purpose of the study on the spray characteristics of a coaxial nozzle, the measurement of the velocity and size of droplets, concentration, and the statistical correlation coefficient between the fluctuation of the velocity and that of the corresponding drop diameter have been carried out. Various method of simultaneous measurement of velocity and drop size have been developed from LDV techniques. The technique used here belongs to the method that supposed by Yule, Holve and Self. It has the advantages of making use of a standard LDV apparatus to which minor modifications have been brought, photomultiplier is equipped with a slit instead of a pinhole and observed the measuring volume at an angle of 90.deg.. The voltage supplied by the photomultiplier has undergone an appropriate analog and digital processing. The experimental results give a good idea of the two phase flow organization and can be helpful to find a drop diffusion model when suitable data are imput.

A Study on the Effects of Droplets Characteristics of Water Mist on the Spray Density on the Floor (미분무 액적특성이 살수밀도에 미치는 영향 연구)

  • Kim, Jong-Hoon;Park, Won-Hee;Kim, Woon-Hyung;Myoung, Sang-Yup
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.120-127
    • /
    • 2021
  • Purpose: In this study, the effect of changes in the variables related to water droplets on the spray density on the floor in the analysis of the water mist fire protection system using FDS was analyzed. Method: When the spray of the water mist nozzle was analyzed in FDS, Particles Per Seconds, Particle Velocity, Size Distribution, and Spray Pattern Shape that can be set in relation to droplets were input to review the analyzed results. Result: In the analysis results, when the number of particles per second was set above a certain value, the spray density of the floor was similar. In the case of Particle Velocity, as the velocity decreases, the spray density of the central portion increases but decreases at a distance of 0.15m or more. From the analysis of the change in the size distribution function, it was found that an increase in the 𝛾 value increases the spray density of the central part, but the value at a remote location decreases. Compared to the result of applying the Gaussian distribution, the median value decreases dramatically when the uniform distribution is applied, but the value at the adjacent position increases. Conclusion: Variables related to the droplet properties of the FDS affect the spray density of the floor. Therefore, in order to increase the reliability of results before performing analyses such as fire suppression or cooling, a sufficient review of input variables is required.

Numerical Analysis of the Effects of Droplets Characteristics of Water Spray on Fire Suppression (물 분무 액적 특성이 화재진압에 미치는 영향에 대한 수치해석)

  • Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effects of the characteristics of droplets of water spray on suppression of fire were analyzed numerically using fire dynamics simulator (FDS) 6.5.2. Additionally, the fire suppression characteristics by the water spray nozzle, including the extinguishing coefficient (EC), droplet size distribution function (SDF), median volumetric diameter (MVD), and droplets per second (DPS), were evaluated in terms of the decreasing normalized heat release rate (HRR) curve and cooling time. It was observed that with increase in the EC, the normalized HRR curve decreased rapidly, and the changing MVD affected the suppression of fire. In case of mono-disperse, the normalized HRR curve decreased slowly with the increase in DPS. On the contrary, in case of multi-disperse, the normalized HRR curve decreased rapidly even with a small increase in DPS.

The effect of gas density on the drop trajectory and drop size distribution in high speed gas stream (고속기류에 분사된 액적궤적 및 입경분포에 미치는 주위 기체밀도의 영향)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • High velocity, gas-assisted liquid drop trajectories were investigated under well-controlled experimental conditions at elevated gas densities and room temperature. A monodisperse stream of drops which are generated by a vibrating-orifice drop generator were injected into a transverse high velocity gas stream. The gas density and air jet velocity were adjusted independently to keep the Weber numbers constant. The Weber numbers studied were 72, 148, 270, 532. The range of experimental conditions included studied the three drop breakup regimes previously referred as bag, stretching/thinning and catastrophic breakup regimes. High-magnification photography and conventional spray field photographs were taken to study the microscopic breakup mechanisms and the drop trajectories in high velocity gas flow fields, respectively. The parent drop trajectories were affected by the gas density and the gas jet velocities and do not show similarity with respect to the either Weber or the Reynolds number, as expected.

  • PDF

Estimation of FDS Prediction Performance on the Operation of Water-Mist (미세물분무 작동에 대한 FDS 예측 성능 평가)

  • Ko, Gwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4809-4814
    • /
    • 2014
  • The aim of the present study was to estimate the prediction performance of a FDS (Fire Dynamic Simulator) to simulate the fire behaviors and suppression characteristics by operating a water-mist. Rosin-Rammler/log-normal distribution function was used to determine the initial droplet distribution of water-mist and the effects of its model constant were considered. In addition, the simulation models were validated by a comparison of the predicted fire suppression characteristics with water-mist injection pressures to the previous experiments, and the thermal flow behaviors and gaseous concentration variations were analyzed. The results showed that water-mists with the same mean diameter were affected by the characteristics of the droplet size distribution, which have different size and velocity distributions at the downstream location. The fire simulations conducted in this study determine the initial droplet size distribution tuned to the base of the spray characteristics measured by previous experiments. The simulation results showed good agreement with the previous measurements for temperature variations and fire suppression characteristics. In addition, it was confirmed that the FDS simulation with a water-mist operation supplies useful details on estimations of the thermal flow fields and gaseous concentration under water mist operation conditions.

LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow (난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES)

  • Yang, Seung-Joon;Koo, Ja-Ye;Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • LES(Large eddy simulation) of breakup and droplet atomization of a liquid jet into cross turbulent flow was performed. Two phase flow of gas and liquid phases were modeled by the mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid droplet respectively. The breakup process of a liquid column and droplets was observed by implementing the blob-KH wave breakup model. The penetration depth into cross flow was comparable with experimental data for several variants of the liquid-gas momentum flux ratio by varying liquid injection velocity. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.

Numerical Study on the Attenuation Effect of Water Mist on Thermal Radiation (미세물분무에 의한 열복사 감쇠 효과에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.7-12
    • /
    • 2020
  • A numerical study was conducted to investigate the effects of the spray characteristics of water mist on the attenuation of thermal radiation. The attenuation process of the thermal radiation, generated from a hot surface panel, passing through the water mist was calculated via Fire Dynamics Simulator (FDS), and the effects of the flow rate, droplet mean diameter, and spray injecting angle of the water mist were analyzed. The results indicated that the increase in flowrate and decrease in droplet size led to an increase in the attenuation of thermal radiation. As the thermal radiation passed through the spray droplets, the effect of the spatial distribution of spray droplets was verified by calculating the thermal radiation attenuation at different spray injecting angles. The results indicated that the radiation attenuation increases as the spray angle increases. This implies that a wider distribution of spray droplets, irrespective of the droplet size and flowrate, increases the attenuation effect on thermal radiation.

A Study on Droplet Distribution of Bio Diesel Fuels Using Immersion Sampling Method (액침법에 의한 바이오디젤유의 액적분포에 관한 연구)

  • Kim, M.S.;Doh, H.C.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-10
    • /
    • 2006
  • The purpose of this study is to measure the droplet distribution and Sauter mean diameter(SMD) of biodiesel fuel, using the immersion sampling method. This method involves using an optical microscope and a CCD camera, to take an image of the droplets. These images are then measured by using a 'Sigma Scan' processing program. The results of the above experiment are summarized as followed ; (1) There can be as much as a 10% error rate when measuring the diameter of these droplets, using the image processing method and the naked eye. (2) The result of droplet size distribution test, TVO(transesterified vegetable oil) big size droplet distribution were increased at ambient pressure $6kg/cm^2$. (3) When ambient pressure increased $6kg/cm^2$ above, SMD variation of TVO and UVO(used vegetable oil) 30 are small. (4) On Rosin-Rammler analysis, droplets size distribution of UVO(used vegetable oil) 30 uniform more than TVO 20 on ambient pressure $1kg/cm^2$.

  • PDF

Analysis Surrounding Condition for the Design of a Novel Direct-injection Diesel engine Combustion System (새로운 형상의 디젤엔진 연소실 설계를 위한 주위조건의 분석)

  • ;T.F.Yeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.60-68
    • /
    • 1996
  • 디젤 엔진의 분사연료를 연소실 내부에 마련된 작은 돌출부에 충돌시켜 액적을 작게 부수고 연료가 연소실 내부에 고루 분포할 수 있도록 하여 여러 가 지 엔진성능향상을 도모한 새로운 디젤 연소실 시스템이 최근 제시되고 있다. 이들 시스템은 피스톤 내부 혹은 엔진헤드 부위에 분사연료 충돌부를 두고 있는데, 여기에서는 이 새로운 시스템 개발에 있어 고려되어야 할 몇 가지 중요 요인들에 중점을 두어 분석하였다. 결과로서 분사압력, 사노즐크기, 주위공기 온도와 압력의 변화가 분무 평균입경과 분무연료의 분포에 미치는 영향을 제시하였다.

  • PDF