• Title/Summary/Keyword: 액압 강성

Search Result 3, Processing Time 0.016 seconds

Bursting Failure Prediction in Tube Hydroforming Process (튜브 액압성형 공정에서의 터짐 현상 예측)

  • Kim, Jeong;Lei, Liping;Kang, Sung-Jong;Kang, Beom-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.160-169
    • /
    • 2001
  • To predict busting failure in tubular hydroforming, the criteria for ductile fracture proposed by Oyane is combined with the finite element method. From the histories of stress and strain in each element obtained from finite element analysis, the fracture initiation site is predicted by mean of the criterion. The prediction by the ductile fracture criterion is applied to three hydroforming processes such as a tee extrusion, an automobile rear axle housing and lower am. For these products, the ductile fracture integral I is not only affected by the process parameters, but also by preforming processes. All the simulation results show the combination of the finite element analysis and the ductile fracture criteria is useful in the prediction of farming limit in hydroforming processes.

  • PDF

A Study on Analysis and Test for Improvement Factors of Brake Stiffness Feeling (제동 강성감 향상 인자에 대한 해석 및 검증에 관한 연구)

  • Shim, Jae Hun;Shin, Ung Hee;Lee, Joung Hee;Jeon, Gae Bae;Kim, Byong Cheol;Kim, Bong Su;Lee, Kang Kuk
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.3
    • /
    • pp.38-44
    • /
    • 2018
  • Conventional brake system was used for passenger cars and SUV for a long time. However, the high performance brake system has strongly required because of increase of engine power and customer's favorites etc. In this paper, a new high performance brake system for Europe was proposed. For this system, the high performance caliper and disc were newly developed. The superiorities of the developed high performance brake system were verified via heat capacity, hydraulic stiffness, corrosion and harsh braking mode test. Also, the high performance caliper and disc for the light-weight were applied to AL-Alloy and can obtain the weight reduction effect of 2.9 kg per vehicle. Finally, a developed high performance brake system is expected to be used for realization of the high performance at the same platforms.

Analysis of Hydroforming Process for an Automobile Lower Arm by FEM (유한요소법을 이용한 자동차 로어암의 액압성형 해석)

  • Kim, J.;Chang, Y.C.;Kang, S.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.534-542
    • /
    • 2001
  • Tubular hydroforming has attracted increased attention in the automotive industry recently. In this study, a professional finite element program for analysis and design of tube hydroforming processes, has been developed, called HydroFORM-3D, which is based on a rigid-plastic model. With the developed program HydroFORM-3D, the hydroforming process for an automobile lower arm is analyzed and designed. The manufacturing process for a lower arm consists of tube bending, preforming, and final hydroforming. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as internal hydraulic pressure, axial feeding, and tool geometry is required. This paper describes the influences of forming conditions on the hydroforming of a lower arm by using simulation to predict strain and tube shape during bending, preforming, and final hydroforming processes.

  • PDF