• Title/Summary/Keyword: 앙상블 예측

Search Result 328, Processing Time 0.03 seconds

LSTM model predictions of inflow considering climate change and climate variability (기후변화 및 기후변동성을 고려한 LSTM 모형 기반 유입량 예측)

  • Kwon, jihwan;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.348-348
    • /
    • 2022
  • 미래에 대한 기후는 과거와 비교하여 변동성이 더 크고 불확실성 또한 더 크기 때문에 미래의 기후변화를 예측하기 위해서는 기후변화의 절대적인 크기뿐 아니라 불확실한 정도도 함께 고려되어야 한다. 본 연구에서는 CMIP6(Coupled Model Intercomparison Project Phase 6) DB에서 제공된 일 단위 18개의 GCMs(General Circulation Models)의 결과를 분석하였으며 또한 3개의SSP(Shared Socioeconomic Pathway)시나리오와 3개의 미래 구간에 대하여 100개의 앙상블을 각각 생성하였다. 불확실성을 초래하는 원인을 3가지로 구분하고, 각각의 원인에 대한 불확실성의 정도를 앙상블 시나리오에 반영하고자 한다. 현재 기간 및 미래 기간에 대해 100개의 20년 시계열 날씨변수 앙상블을 생성하여 LSTM(Long short-term memory)의 입력자료로 사용하여 댐유입량, 저수위, 방류량을 산정하였다. 댐 유입량 및 방류량의 예측성능을 향상시키기 위해 Input predictor의 종류를 선정하는 방법과 그 변수들의 lag time을 결정하는 방법, 입력자료들을 재구성하는 방법, 하이퍼 매개변수를 효율적으로 최적화하는 방법, 목적함수 설정 방법들을 제시하여 댐 유입량 및 방류량의 예측을 크게 향상시키고자 하였다. 본 연구에서 예측된 미래의 댐유입량 및 방류량 정보는 홍수 또는 가뭄 등 다양한 수자원 관련 문제의 전략을 수립하는 데 있어서 적절한 도움이 될 것이다.

  • PDF

Probabilistic Daecheong Dam Streamflow Prediction using Weather Outlook Weighted Ensemble Streamflow Prediction (확률론적 통계분석을 이용한 대청댐 유입량 예측)

  • Lee, Sang-Jin;Kim, Jeong-Kon;Kim, Joo-Cheol;Woo, Dong-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.303-303
    • /
    • 2011
  • 효율적인 수자원 관리를 위해서는 미래 수문자료의 예측치에 대한 구간을 추정하여 미래에 관측될 자료에 대한 정보를 얻는 문제는 어렵지만 중요한 부분에 해당한다. 특히 중장기 유량예측은 입력변수의 불확실성이 크므로 확률론적 방법을 적용한 예측이 유리하다. 본 연구에서는 SSARR 모형을 이용하여 현재 유역의 상태에 과거에 재현되었던 강우를 결합한 앙상블 유출시나리오를 생성하였다. 그리고 대청댐 월 유입량에 대한 확률론적 예측방안을 제시하기위하여 과거 시나리오의 관측 ESP(Ensemble Streamflow Prediction)확률 및 Croley방법, PDF-Ratio방법을 한국의 기상예측정보 실정에 맞는 가중치 부여방안으로 적용하여 분석하였다. 2010년도 상반기를 기준으로 각 분석 기법별 정확성을 검증한 결과 Croley, PDF-Ratio 등 기상전망을 가중치로 부여한 확률론적 예측기법의 효용성을 확인하였다.

  • PDF

Uncertainty Analysis for the Probabilistic Flood Forecasting (확률론적 홍수예측을 위한 불확실성 분석)

  • Lee, Kyung-Tae;Kim, Young-Oh;Kang, Tae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.71-71
    • /
    • 2012
  • 현재 전 세계적으로 극한강우의 발생빈도가 점차 높아지고 있으며 홍수량 또한 강도가 커지고 있는 것이 현실이다. 하지만 과거의 홍수발생 빈도에 따라 설계된 홍수방어시설들이 점차 한계를 보이고 있으므로 이를 대비하기위한 구조적 대책뿐만 아니라 홍수피해 발생 가능지역에 사전 예경보를 시행하는 비구조적 대책마련 또한 필요하다. 기존의 홍수예측은 확정적인 하나의 유량예측값만을 제공함으로써 신속하고 편리하였지만 이에 대한 불확실성이 큰 경우 예상치 못한 큰 인적 물적 피해를 가져올 수 있다. 이처럼 확률론적 홍수예측의 필요성이 대두되어 지면서 유럽이나 미국등 선진국에서는 EFFS(European Flood Forecasting System)과 NWSRFS(National Water Service River Forecast System)같이 이미 확률론적 홍수예측에 대한 연구 및 기술개발이 활발하게 진행되어지고 있다. 하지만 홍수예측의 확률론적 접근에 있어서는 많은 불확실성들이 내포되어 있으므로 예측시스템에서 생성된 앙상블 유량예측 결과의 신뢰도 분석과 올바른 불확실성 정보의 제공이 필요하다. 본 연구는 확률론적 홍수예측 방법을 국내에 적용시켜서 기상청의 예측시스템 KLAPS(Korea Local Analysis and Prediction System), MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation), UM(Unified Model) 그리고 MOGREPS(Met Office Global Regional Ensemble Prediction System)으로부터 생성된 기상앙상블을 현재 국토해양부 홍수통제소에서 사용하고 있는 강우-유출모형인 저류함수모형(Storage Function Method)의 입력 자료로 사용한다. 확률론적 홍수예측에서 오는 불확실성을 분석하기 위해서 첫 번째로 제공되는 기상예측 시스템의 시 공간적 스케일 및 대상유역의 공간특성에 따라 어떠한 형태로 전파되어지는지를 분석하였다. 두 번째는 각각의 예측시스템들이 선행기간(Lead time)에 따라 불확실성의 특성이 어떻게 나타나게 되는지를 확인하였다. 이러한 불확실성의 특성을 정확하게 파악하게 된다면 예측에 있어서 현재 갖고 있는 문제점들로부터 개선해 나가야 할 방향을 제시해주어 향후연구에 유용하게 활용될 수 있을 것이다.

  • PDF

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.

Enhancing Autonomous Vehicle RADAR Performance Prediction Model Using Stacking Ensemble (머신러닝 스태킹 앙상블을 이용한 자율주행 자동차 RADAR 성능 향상)

  • Si-yeon Jang;Hye-lim Choi;Yun-ju Oh
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.21-28
    • /
    • 2024
  • Radar is an essential sensor component in autonomous vehicles, and the market for radar applications in this context is steadily expanding with a growing variety of products. In this study, we aimed to enhance the stability and performance of radar systems by developing and evaluating a radar performance prediction model that can predict radar defects. We selected seven machine learning and deep learning algorithms and trained the model with a total of 49 input data types. Ultimately, when we employed an ensemble of 17 models, it exhibited the highest performance. We anticipate that these research findings will assist in predicting product defects at the production stage, thereby maximizing production yield and minimizing the costs associated with defective products.

Attention-Based Ensemble for Mitigating Side Effects of Data Imbalance Method (데이터 불균형 기법의 부작용 완화를 위한 어텐션 기반 앙상블)

  • Yo-Han Park;Yong-Seok Choi;Wencke Liermann;Kong Joo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.546-551
    • /
    • 2023
  • 일반적으로 딥러닝 모델은 모든 라벨에 데이터 수가 균형을 이룰 때 가장 좋은 성능을 보인다. 그러나 현실에서는 특정라벨에 대한 데이터가 부족한 경우가 많으며 이로 인해 불균형 데이터 문제가 발생한다. 이에 대한 해결책으로 오버샘플링과 가중치 손실과 같은 데이터 불균형 기법이 연구되었지만 이러한 기법들은 데이터가 적은 라벨의 성능을 개선하는 동시에 데이터가 많은 라벨의 성능을 저하시키는 부작용을 가지고 있다. 본 논문에서는 이 문제를 완화시키고자 어텐션 기반의 앙상블 기법을 제안한다. 어텐션 기반의 앙상블은 데이터 불균형 기법을 적용한 모델과 적용하지 않은 모델의 출력 값을 가중 평균하여 최종 예측을 수행한다. 이때 가중치는 어텐션 메커니즘을 통해 동적으로 조절된다. 그로므로 어텐션 기반의 앙상블 모델은 입력 데이터 특성에 따라 가중치를 조절할 수가 있다. 실험은 에세이 자동 평가 데이터를 대상으로 수행하였다. 실험 결과로는 제안한 모델이 데이터 불균형 기법의 부작용을 완화하고 성능이 개선되었다.

  • PDF

Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking (배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발)

  • Yun-Ji Kwak;Chaeyeon Go;Shinyoung Kwag;Seunghyun Eem
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.

Development of a Deep Learning-based Midterm PM2.5 Prediction Model Adapting to Trend Changes (경향성 변화에 대응하는 딥러닝 기반 초미세먼지 중기 예측 모델 개발)

  • Dong Jun Min;Hyerim Kim;Sangkyun Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.251-259
    • /
    • 2024
  • Fine particulate matter, especially PM2.5 with a diameter of less than 2.5 micrometers, poses significant health and economic risks. This study focuses on the Seoul region of South Korea, aiming to analyze PM2.5 data and trends from 2017 to 2022 and develop a mid-term prediction model for PM2.5 concentrations. Utilizing collected and produced air quality and weather data, reanalysis data, and numerical model prediction data, this research proposes an ensemble evaluation method capable of adapting to trend changes. The ensemble method proposed in this study demonstrated superior performance in predicting PM2.5 concentrations, outperforming existing models by an average F1 Score of approximately 42.16% in 2019, 58.92% in 2021, and 34.79% in 2022 for future 3 to 6-day predictions. The model maintains performance under changing environmental conditions, offering stable predictions and presenting a mid-term prediction model that extends beyond the capabilities of existing deep learning-based short-term PM2.5 forecasts.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

Improvement of Predicting Failure Rate of Photovoltaic System using Ensemble Methods (앙상블 기법을 이용한 태양광 발전소 고장 예측 개선)

  • Jang, Munjong;Na, Ickchae;Kim, Younghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.401-403
    • /
    • 2016
  • 최근 태양광 발전사업의 투자 수요가 증가하고 있으며, 이에 따른 태양광 발전시스템 (PV시스템)의 신뢰성 및 발전 효율 향상 등을 확보할 수 있는 모니터링 시스템의 중요성이 부각되고 있다. 본 논문에서는 데이터를 앙상블 기법으로 분석하여 알려진 자동 분류 기법과 앙상블 기법을 비교해보고, 이를 바탕으로 PV시스템 고장 예측의 정확도를 향상 시키고자 한다.