• Title/Summary/Keyword: 앙상블 보정 기법

Search Result 28, Processing Time 0.029 seconds

Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models (레이더 강우 앙상블과 유출 블랜딩 기법을 이용한 최적 유출 수문곡선 산정)

  • Lee, Myungjin;Kang, Narae;Kim, Jongsung;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Recently, the flood damage by the localized heavy rainfall and typhoon have been frequently occurred due to the climate change. Accurate rainfall forecasting and flood runoff estimates are needed to reduce such damages. However, the uncertainties are involved in guage rainfall, radar rainfall, and the estimated runoff hydrograph from rainfall-runoff models. Therefore, the purpose of this study is to identify the uncertainty of rainfall by generating a probabilistic radar rainfall ensemble and confirm the uncertainties of hydrological models through the analysis of the simulated runoffs from the models. The blending technique is used to estimate a single integrated or an optimal runoff hydrograph by the simulated runoffs from multi rainfall-runoff models. The radar ensemble is underestimated due to the influence of rainfall intensity and topography and the uncertainty of the rainfall ensemble is large. From the study, it will be helpful to estimate and predict the accurate runoff to prepare for the disaster caused by heavy rainfall.

Spatial Autocorrelation Characteristic Analysis on Bayesian ensemble Precipitation of Nakdong River Basin (낙동강유역 강우의 공간자기상관 특성분석을 통한 베이지안 앙상블 강우 검증)

  • Moon, Soo Jin;Sun, Ho Young;Kang, Boo Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.411-411
    • /
    • 2017
  • 유역 내 발생하는 강우의 공간적인 분포는 인접성 및 거리에 따라 달라질 수 있다. 공간자기상관 분석은 공간단위(유역 또는 행정구역)의 변수(강수 등)가 주변지역과 갖는 관계를 통해 얼마나 분산되어 있는지 혹은 군집되어 있는지를 판별하는 기법으로 최근 많은 연구에서 활성화 되고 있다. 본 연구에서는 낙동강유역을 대상으로 1980~2000년까지 20개년의 기상청을 통해 수집한 강우자료와 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 가용할 수 있는 20개 모델의 강우를 수집하였다. 기후변화 자료는 정상성 분위사상법으로 지역오차보정을 실시하고 불확실성을 저감하고자 베이지안 모델 평균기법을 통해 새로운 시계열을 생성하였다. 생성된 시계열의 공간적인 분포를 정량적으로 평가하고자 중권역별 공간자기상관 분석을 수행하였다. 대부분의 연구에서는 GIS를 활용하여 정성적으로 강우의 분포를 나타내고 있지만 본 연구에서는 공간단위의 인접성 또는 거리에 따른 척도를 기반으로 공간자기상관을 탐색할 수 있는 Moran's I와 LISA(Local Indicators of Spatial Association)기법을 적용하였다. Moran's I는 전체 연구지역에 대한 관계를 하나의 값으로 보여주는 전역적인 기법이며, LISA는 상대적으로 넓은 지역을 국지적으로 구분하여 특정지역에 대한 Hot spot 및 Cold spot을 통해 공간자기상관 정도를 나타내는 국지적인 기법이다. 두 기법을 적용하기 위하여 인접성 기반의 공간매트릭스를 산정하고 계절별 관측값과 베이지안 앙상블 강우의 Moran's I 및 LISA 분석을 실시하였다. 관측자료와 베이지안 앙상블 강우의 분석결과가 매우 유사하게 나타남으로써 베이지안 앙상블 강우의 공간적인 분포가 관측강우를 충분히 재현하고 있다고 판단된다.

  • PDF

Bias-correction of near-real-time multi-satellite precipitation products using machine learning (머신러닝 기반 준실시간 다중 위성 강수 자료 보정)

  • Sungho Jung;Xuan-Hien Le;Van-Giang Nguyen;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.280-280
    • /
    • 2023
  • 강수의 정확한 시·공간적 추정은 홍수 대응, 가뭄 관리, 수자원 계획 등 수문학적 모델링의 핵심 기술이다. 우주 기술의 발전으로 전지구 강수량 측정 프로젝트(Global Precipitation Measurement, GPM)가 시작됨에 따라 위성의 여러 센서를 이용하여 다양한 고해상도 강수량 자료가 생산되고 있으며, 기후변화로 인한 수재해의 빈도가 증가함에 따라 준실시간(Near-Real-Time) 위성 강수 자료의 활용성 및 중요성이 높아지고 있다. 하지만 준실시간 위성 강수 자료의 경우 빠른 지연시간(latency) 확보를 위해 관측 이후 최소한의 보정을 거쳐 제공되므로 상대적으로 강수 추정치의 불확실성이 높다. 이에 따라 본 연구에서는 앙상블 머신러닝 기반 수집된 위성 강수 자료들을 관측 자료와 병합하여 보정된 준실시간 강수량 자료를 생성하고자 한다. 모형의 입력에는 시단위 3가지 준실시간 위성 강수 자료(GSMaP_NRT, IMERG_Early, PERSIANN_CCS)와 방재기상관측 (AWS)의 온도, 습도, 강수량 지점 자료를 활용하였다. 지점 강수 자료의 경우 결측치를 고려하여 475개 관측소를 선정하였으며, 공간성을 고려한 랜덤 샘플링으로 375개소(약 80%)는 훈련 자료, 나머지 100개소(약 20%)는 검증 자료로 분리하였다. 모형의 정량적 평가 지표로는 KGE, MAE, RMSE이 사용되었으며, 정성적 평가 지표로 강수 분할표에 따라 POD, SR, BS 그리고 CSI를 사용하였다. 머신러닝 모형은 개별 원시 위성 강수 자료 및 IDW 기법보다 높은 정확도로 강수량을 추정하였으며 공간적으로 안정적인 결과를 나타내었다. 다만, 최대 강수량에서는 다소 과소추정되므로 이는 강수와 관련된 입력 변수의 개수 업데이트로 해결할 수 있을 것으로 판단된다. 따라서 불확실성이 높은 개별 준실시간 위성 자료들을 관측 자료와 병합하여 보정된 최적 강수 자료를 생성하는 머신러닝 기법은 돌발성 수재해에 실시간으로 대응 가능하며 홍수 예보에 신뢰도 높은 정량적인 강수량 추정치를 제공할 수 있다.

  • PDF

Comparative assessment of sequential data assimilation-based streamflow predictions using semi-distributed and lumped GR4J hydrologic models: a case study of Namgang Dam basin (준분포형 및 집중형 GR4J 수문모형을 활용한 순차자료동화 기반 유량 예측 특성 비교: 남강댐 유역 사례)

  • Lee, Garim;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.585-598
    • /
    • 2024
  • To mitigate natural disasters and efficiently manage water resources, it is essential to enhance hydrologic prediction while reducing model structural uncertainties. This study analyzed the impact of lumped and semi-distributed GR4J model structures on simulation performance and evaluated uncertainties with and without data assimilation techniques. The Ensemble Kalman Filter (EnKF) and Particle Filter (PF) methods were applied to the Namgang Dam basin. Simulation results showed that the Kling-Gupta efficiency (KGE) index was 0.749 for the lumped model and 0.831 for the semi-distributed model, indicating improved performance in semi-distributed modeling by 11.0%. Additionally, the impact of uncertainties in meteorological forcings (precipitation and potential evapotranspiration) on data assimilation performance was analyzed. Optimal uncertainty conditions varied by data assimilation method for the lumped model and by sub-basin for the semi-distributed model. Moreover, reducing the calibration period length during data assimilation led to decreased simulation performance. Overall, the semi-distributed model showed improved flood simulation performance when combined with data assimilation compared to the lumped model. Selecting appropriate hyper-parameters and calibration periods according to the model structure was crucial for achieving optimal performance.

A Study on the Development of the Stochastic Continuous Storage Function Model (추계학적 연속형 저류함수 모형 개발에 관한 연구)

  • Lee, Byong-Ju;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.231-235
    • /
    • 2009
  • 본 연구에서는 홍수예보를 위한 사상형 모형인 저류함수모형 적용시 문제점을 개선하기 위해 기존의 저류함수 모형에 자유수와 장력수의 2개 영역으로 구성된 토양수분모의 컴포넌트를 결합하여 지표유출, 중간유출, 기저유출의 유출수문성분에 대한 연속적인 모의가 가능하도록 하였으며 실시간 홍수예측을 위해 다수의 유량 관측지점과의 실시간 오차 보정이 가능하도록 앙상블 칼만 필터링 기법을 도입하였다. 개발된 모형의 적용성을 평가하기 위해 낙동강 권역을 대상유역으로 선정하였으며 시단위 강우자료, 기상자료, 유량자료를 비롯하여 GIS를 기반의 지형자료를 구축하였다. 연속형 저류함수형의 매개변수 추정결과 주요지점의 관측유량에 대해 높은 적합도를 보였으며 1시간 선행시간의 홍수량 예측결과에서도 높은 정확도를 보이는 것으로 나타났다.

  • PDF

An enhancement of GloSea5 ensemble weather forecast based on ANFIS (ANFIS를 활용한 GloSea5 앙상블 기상전망기법 개선)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1031-1041
    • /
    • 2018
  • ANFIS-based methodology for improving GloSea5 ensemble weather forecast is developed and evaluated in this study. The proposed method consists of two steps: pre & post processing. For ensemble prediction of GloSea5, weights are assigned to the ensemble members based on Optimal Weighting Method (OWM) in the pre-processing. Then, the bias of the results of pre-processed is corrected based on Model Output Statistics (MOS) method in the post-processing. The watershed of the Chungju multi-purpose dam in South Korea is selected as a study area. The results of evaluation indicated that the pre-processing step (CASE1), the post-processing step (CASE2), pre & post processing step (CASE3) results were significantly improved than the original GloSea5 bias correction (BC_GS5). Correction performance is better the order of CASE3, CASE1, CASE2. Also, the accuracy of pre-processing was improved during the season with high variability of precipitation. The post-processing step reduced the error that could not be smoothed by pre-processing step. It could be concluded that this methodology improved the ability of GloSea5 ensemble weather forecast by using ANFIS, especially, for the summer season with high variability of precipitation when applied both pre- and post-processing steps.

Data Assimilation of Leaf Area Index for Drought Assessment In East Asia (잎면적 지수 자료동화 기반 동아시아 가뭄 평가)

  • Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.31-31
    • /
    • 2019
  • 잎의 생태 계절학적 변화는 지상의 탄소/질소 순환에 큰 영향을 미칠 뿐 아니라 토양 수분, 증발산과 같은 물 순환에 중요한 인자로 작용한다. 이를 모의하기 위하여 많은 지면-생태 생태모형들이 개발되어져 왔지만, 자연현상을 충분히 이해하지 못함으로 인하여 모델 결과값과 실제 관측 값에 차이가 발생된다. 이러한 한계점을 해결하기 위하여 실제 모형과 관측되어진 자료를 실시간으로 융합하는 자료동화 기법이 개발되어져 모델들의 오차를 줄여주거나, 실제 모델의 파라미터들을 보정하는데 사용되어지고 있다. 본 연구에서는 지상기후모형인 Community Land Model(CLM)을 기반으로 하여 2003년부터 2010년까지 동아시아지역을 대상으로 연구를 진행하였다. 지면-대기-해양 모델로부터 발생되어진 40개의 앙상블 기상자료를 이용하여 도출된 잎면적 지수와 Moderate Resolution Imaging Spectroradiometer(MODIS) 잎면적 지수를 실시간으로 융합하는 앙상블 칼만 필터기법을 이용하여 잎면적지수 자료동화가 생태 생태 수문에 미치는 영향을 알아보았다. 특히 잎면적 지수 자료동화가 동아시아 지역의 가뭄에 미치는 영향을 평가하기 위하여 1~3 m 의 토양수분의 변화를 이용하여 가뭄을 정의하였다. 이러한 토양수분 가뭄을 시 공간적으로 나타내어 동아시아지역의 가뭄의 기간, 심도 와 같은 가뭄을 특성을 이해하여 보고자 하였으며, 잎면적 지수 자료동화가 가뭄에 미치는 영향을 알아보았다.

  • PDF

Hydrologic Utilization of Radar-Derived Rainfall (II) Uncertainty Analysis (레이더 추정강우의 수문학적 활용 (II): 불확실성 해석)

  • Kim Jin-Hoon;Lee Kyoung-Do;Bae Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1051-1060
    • /
    • 2005
  • The present study analyzes hydrologic utilization of optimal radar-derived rainfall by using semi-distributed TOPMODEL and evaluates the impacts of radar rainfall and model parametric uncertainty on a hydrologic model. Monte Carlo technique is used to produce the flow ensembles. The simulated flows from the corrected radar rainfalls with real-time bias adjustment scheme are well agreed to observed flows during 22-26 July 2003. It is shown that radar-derived rainfall is useful for simulating streamflow on a basin scale. These results are diagnose with which radar-rainfall Input and parametric uncertainty influence the character of the flow simulation uncertainty. The main conclusions for this uncertainty analysis are that the radar input uncertainty is less influent than the parametric one, and combined uncertainty with radar and Parametric input can be included the highest uncertainty on a streamflow simulation.

High-Resolution Sentinel-2 Imagery Correction Using BRDF Ensemble Model (BRDF 앙상블 모델을 이용한 고해상도 Sentinel-2 영상 보정)

  • Hyun-Dong Moon;Bo-Kyeong Kim;Kyeong-Min Kim;Subin Choi;Euni Jo;Hoyong Ahn;Jae-Hyun Ryu;Sung-Won Choi;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1427-1435
    • /
    • 2023
  • Vegetation indices based on selected wavelength reflectance measurements are used to represent crop growth and physiological conditions. However, the anisotropic properties of the crop canopy surface can govern spectral reflectance and vegetation indices. In this study, we applied an ensemble of bidirectional reflectance distribution function (BRDF) models to high-resolution Sentinel-2 satellite imagery and compared the differences between correction results before and after reflectance. In the red and near-infrared (NIR) band reflectance images, BRDF-corrected outlier values appeared in certain urban and paddy fields of farmland areas and forest shadow areas. These effects were equally observed when calculating the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2). Furthermore, the outlier values in corrected NIR band were shown in pixels shadowed by mountain terrain. These results are expected to contribute to the development and improvement of BRDF models in high-resolution satellite images.

Drought Outlook using APCC MME Seasonal Prediction Information (APCC MME 계절예측정보를 이용한 가뭄전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Sohn, Soo-Jin;Lee, Woo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1784-1788
    • /
    • 2010
  • APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 형태의 계절예측정보를 이용하여 3개월 가뭄전망을 수행하였다. APCC MME는 기후예측모형이 가지는 불확실성을 최소화하기 위한 방법으로, 아시아 태평양 지역 내 9개 회원국 16개 기관 21개 기후모형의 계절예측정보를 활용하여, 개별 모형이 가지는 계통오차(Systematic error)를 앙상블 기법을 통하여 상쇄함으로써 최적의 예측자료를 도출한다. 또한, 기후예측 모형이 예측한 대기순환장은 관측 지점변수와 경험적 통계적 관련성을 가지므로, 이를 바탕으로 상세지역의 이상기후에 대한 정보를 도출할 수 있다. 본 연구에서는 가뭄 관리 및 전망을 위한 입력 자료로서, 기상전문 기관인 APEC 기후센터 (APEC Climate Center, APCC)에서 제공하는 전구 규모의 기온 및 강수 전망자료를 기상청 산하 59개 지점의 전망자료로 통계적 규모 축소화 기법을 통해 3개월 예보를 실시하였다. APCC 계절예측자료를 가뭄모니터링시스템의 자료입력 포맷에 따라 적절히 가공한 뒤, 가뭄 관리 및 전망을 위하여 SPI(Standard Precipitation Index) 및 PDSI(Palmer Drought Severity Index)지수의 입력자료로 사용하여 SPI 및 PDSI 지수를 산정하였다. 또한 분위사상법(Quantile Mapping)을 이용하여 총 59개 지점의 과거 월평균 관측값과 최근 2009년에 대한 모의값의 누적확률분포값을 계산하고 모의값의 확률분포를 관측값의 확률분포에 사상시켜 가뭄 전망을 위한 기상변수의 오차를 보정하고자 하였다. 이러한 계절예측정보를 이용하여 가뭄 전망에 대한 신뢰도가 높아진다면, 사전예방 및 피해완화로 가뭄상황에 대한 신속한 대처 및 피해의 경감이 이루어질 수 있을 것이다.

  • PDF