• 제목/요약/키워드: 앙상블 경험적 모드 분해법

검색결과 11건 처리시간 0.009초

앙상블 경험적 모드분해법을 이용한 기상인자와 우리나라 극치강우의 장기경향성간의 상관성 분석 (Correlation Analysis Between Climate Indices and Long-Term Trend of Extreme Rainfall using EEMD)

  • 김한빈;주경원;김태림;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.230-230
    • /
    • 2019
  • 대규모순환패턴과 같은 기후시스템에서의 상태와 변화를 정량화하여 나타낸 기상인자는 수문기상학적 변수와 밀접한 연관이 있는 것으로 알려져 있으며, 이에 따라 비정상성 빈도해석의 수행에 있어서 확률분포모형의 매개변수에 대한 공변량으로 널리 활용되고 있다. 본 연구에서는 비정상성 강우빈도해석 시 매개변수의 공변량으로 우리나라의 극치강우의 장기경향성을 잘 반영할 수 있는 기상인자를 선정하고자 한다. 먼저, 시계열자료를 주기성을 가지는 내재모드함수와 장기경향성을 나타내는 잔여값으로 분해할 수 있는 앙상블 경험적 모드분해법을 이용하여 우리나라 전역에 분포된 61개 지점에서 관측된 연 최대치 강우자료의 평균 및 분산에 대한 잔여값을 추출하였다. 다음으로 11개의 월 단위 기상인자에 대한 계절별 연 평균 시계열과 추출된 평균 및 분산의 잔여값과의 상관계수를 산정하였다. 그 결과, 11개의 기상인자 중 Atlantic Meridional Mode (AMM), Atlantic Multi-decadal Oscillation (AMO), North Atlantic Oscillation (NAO)가 우리나라 연 최대치 강우자료의 평균 및 분산에 대한 장기경향성과 높은 상관성이 있는 것으로 나타났다. 계절적으로는 AMM과 AMO의 경우 이전 년도 가을철 평균이 전 지점 평균 약 0.6, NAO는 이전 년도 여름철 평균이 전 지점 평균 0.3 이상의 유의한 상관계수를 가지는 것으로 나타났다.

  • PDF

장기 강우 예측을 위한 전지구적 기상인자 선정 및 시계열 모형 구축 (Long-term Precipitation Series Prediction Using Global Climate Indices in South Korea)

  • 김태림;서정호;주경원;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.16-16
    • /
    • 2017
  • 기후 시스템의 다양한 상호작용으로 인해 나타나는 대표적 현상인 강우는 수문학적 분석 과정의 필수적인 요소이며 장기 강우를 예측하는 것은 효율적인 수자원 관리에 중요한 기반이 되고 있다. 이러한 강우는 장기적으로 지구의 대기-해양 순환 패턴의 영향을 받으며, 특히 엘니뇨와 라니냐와 같은 기상 이변이 발생할 경우 대규모 순환에 변화가 일어나게 되어 강우에 영향을 미칠 수 있다. 따라서 본 연구에서는 지구의 순환 패턴 특성을 수치화한 전지구적 기상인자 중에서 우리나라 장기 강우를 예측하기 위한 기상인자를 선정하고 시계열 모형 구축을 통하여 예측력을 평가하였다. 이를 위해 강우에 내재된 다양한 대기-해양 순환 패턴으로부터 나타나는 주기적 요소를 추출하기 위해 앙상블 경험적 모드분해법을 사용하여 강우를 분해한 후, 각 분해된 강우자료와 전지구적 기상인자와의 상관성 분석을 통해 높은 상관성을 가진 기상인자를 선별하고 단계식 변수선택법으로부터 유의미한 기상인자를 최종적으로 선정하였다. 그 결과, 우리나라 기상청 60개 지점의 월별 강우자료 중 전반적으로 영향을 미치는 기상인자를 선정할 수 있었으며, 선정된 기상인 자로 구축된 시계열 모형을 통해 우리나라 장기 강우를 예측하였다.

  • PDF

앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측 (Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition)

  • 김의진;김동규
    • 대한토목학회논문집
    • /
    • 제38권4호
    • /
    • pp.579-586
    • /
    • 2018
  • 단기 통행속도 예측을 위해 데이터 기반 비모수적 기법들을 활용한 다양한 연구들이 수행되고 있다. 그럼에도 교통신호 및 교차로로 인한 복잡한 동적 특성을 가지는 도시부의 예측 연구는 상대적으로 부족한 실정이다. 본 연구는 도시부 통행 속도를 예측하기 위해 앙상블 경험적 모드 분해법(EEMD)과 인공신경망(ANN)을 이용한 하이브리드 접근법을 제안하는 것을 목적으로 한다. EEMD는 통행속도의 시계열 자료를 고유모드함수(IMF)와 오차항으로 분해한다. 분해된 IMF는 시간단위의 국지적 특성을 반영하며, ANN을 통해 개별적으로 예측된다. IMF는 원본데이터가 가진 비선형성, 비정상성, 진동 등의 복잡성을 완화하기 때문에, 원래의 통행속도에 비하여 더 정확하게 예측될 수 있다. 예측된 IMF들은 합산되어 예측 통행속도를 표현한다. 본 연구에서 제시된 방법을 검증하기 위하여 대구시의 DSRC로부터 구득된 통행속도 데이터가 활용된다. 성능평가는 도시부 링크 중 특히 예측이 어려운 지점에 대해 수행되었으며, 분석 결과 제시된 모형은 15분 후 예측에 대해 각각 평상시 10.41%, 와해상태시 25.35%의 오차율을 가지며, 단순 ANN 기법에 비하여 우수한 성능을 보이는 것으로 확인된다. 본 연구에서 개발된 모형은 도시교통관리체계의 신뢰성 있는 교통정보를 제공하는 데에 기여할 수 있을 것으로 기대된다.

앙상블 경험적 모드분해법을 활용한 비정상성 확률분포형의 매개변수 추세 분석에 관한 연구 (A study on a tendency of parameters for nonstationary distribution using ensemble empirical mode decomposition method)

  • 김한빈;김태림;신홍준;허준행
    • 한국수자원학회논문집
    • /
    • 제50권4호
    • /
    • pp.253-261
    • /
    • 2017
  • 최근 수문자료에서 비정상성 현상들이 관측됨에 따라 비정상성 빈도해석에 관한 연구들이 활발하게 진행되고 있다. 시간에 따라 변화하는 통계적 특성을 고려하기 위하여 다양한 형태의 비정상성 확률분포형이 제시되고 있으며, 비정상성 매개변수를 추정할 수 있는 다양한 방법들이 연구되고 있는 추세이다. 본 연구에서는 앙상블 경험적 모드분해법을 이용한 비정상성 Gumbel 분포형의 매개변수 추정방법을 제시하고 기존에 비정상성 매개변수 추정방법으로 주로 사용되어온 최우도법과 비교해보고자 하였다. 국내 자료의 적용을 위하여 기상청 지점의 다양한 지속기간에 대해 경향성이 나타나는 연 최대치 강우자료를 사용하였다. 적용 결과 선형적 경향성을 나타내는 자료에 대해서는 두 가지 방법 모두 적절한 모형을 선정하였으나, 2차 곡선 형태의 경향성이 존재하는 자료에 대해서는 앙상블 경험적 모드분해법의 경우에만 이러한 경향성을 반영하는 비정상성 Gumbel 모형을 선정하였다.

앙상블 경험적 모드 분해법을 이용한 우리나라 봄 시작일에 관한 연구 (A Study on the Timing of Spring Onset over the Republic of Korea Using Ensemble Empirical Mode Decomposition)

  • 권재일;최영은
    • 대한지리학회지
    • /
    • 제49권5호
    • /
    • pp.675-689
    • /
    • 2014
  • 본 연구에서는 앙상블 경험적 모드 분해법을 우리나라에 적용하여 봄 시작일을 정의하고, 이에 대한 시 공간적인 변화를 분석하였으며, 봄 시작일의 변동성을 분석하여, 봄 시작일에 영향을 미치는 요인을 파악하였다. 우리나라 평균 봄 시작일은 3월 11일로 나타났고, 연구기간 동안 2.6일/10년으로 빨라졌다. 봄 시작일은 일반적으로 위도와 고도가 높아짐에 따라, 그리고 해안에서 내륙으로 갈수록 늦게 나타났다. 우리나라 봄 시작일에 영향을 미치는 요인을 파악하기 위해 상관분석을 수행하였고, 전구평균기온, 북극진동(Arctic Oscillation, AO), 시베리아 고기압이 우리나라 봄 시작일과 유의한 상관관계를 나타냈다. 봄 시작일에 영향을 미치는 지수들을 대상으로 다중회귀분석을 수행하였고, 세 가지 변수가 모두 입력된 모형은 64.7%의 설명력을 나타냈다. 다중회귀분석의 결과 봄 시작일에 미치는 영향은 전구평균기온이 가장 크고, AO가 그 다음으로 나타났다. 우리나라 봄 시작일에 영향을 미치는 종관적인 요인을 파악하기 위해 기압장 및 바람장을 분석한 결과, 시베리아 고기압, 알류샨 저기압, 상층 기압골의 강도 및 위치에 따른 북풍계열 바람의 강도가 봄 시작일을 결정하는 주요 원인인 것으로 나타났다.

  • PDF

앙상블 경험적 모드분해법을 활용한 북한지역 극한강수량 전망 (Prospect of extreme precipitation in North Korea using an ensemble empirical mode decomposition method)

  • 정진홍;박동혁;안재현
    • 한국수자원학회논문집
    • /
    • 제52권10호
    • /
    • pp.671-680
    • /
    • 2019
  • 기후변화에 따른 수문순환 요소들의 변화로 인해 미래에는 전 세계적으로 수문사상의 규모 및 빈도가 증가할 것이라는 많은 선행연구들이 있다. 하지만 북한지역의 미래 강수량에 대한 정량적 연구와 평가는 미비한 실정이다. 북한지역 역시 우리나라와 마찬가지로 극한강수에 따른 피해가 발생될 것으로 예상되기 때문에 북한지역에 관한 연구는 지속적으로 진행되어야 한다. 따라서 본 연구에서는 정상성 및 비정상성 빈도해석을 통해 북한지역의 미래(2020-2060년) 극한강수를 산정하고 현재기후(1981-2017년)와 비교 분석하였다. 비정상성 빈도해석은 RCP기후변화시나리오에 따라 모의된 HadGEM2-AO모델의 외부인자(JFM(1-3월), AMJ(4-6월), JAS(7-9월), OND(10-12월)의 평균 강수량)를 고려하여 수행하였다. 북한지역 극치 강우 사상과 유사한 경향을 보이는 외부인자 선정을 위해 앙상블 경험적 모드분해법을 활용하여 연 최대 강우자료의 잔차를 추출하였다. 추출된 잔차와 외부인자 사이의 상관성분석을 실시하였다. 8개 지점(강계, 삼지연, 장진, 양덕, 함흥, 신포, 장전, 신계)에서 3개의 외부인자(AMJ, JAS, OND)가 경향이 있음을 확인하였다. 선정된 외부인자를 고려하여 비정상성 GEV모형을 구축하고 빈도해석을 수행하였다. 그 결과, RCP4.5에서는 8개 지점 중 4개 지점이 현재기후 대비 미래극한강수량이 감소하는 경향을 보였고 3개 지점이 증가하는 것으로 나타났다. 반면에 RCP8.5에서는 2개 지점이 감소하는 경향을 5개 지점이 증가하는 것으로 분석되었다.

장기 기후 변동성을 고려한 인공신경망 앙상블 모형 적용: 한강 유역 댐 유입량 예측을 중심으로 (Application of Artificial Neural Network Ensemble Model Considering Long-term Climate Variability: Case Study of Dam Inflow Forecasting in Han-River Basin)

  • 김태림;주경원;조완희;허준행
    • 한국습지학회지
    • /
    • 제21권spc호
    • /
    • pp.61-68
    • /
    • 2019
  • 최근 장기적인 기후 변동성을 고려하기 위하여 대기-해양 순환 패턴을 수치화한 기상인자가 수문 변수 예측에 널리 사용되고 있다. 또한 정확하고 안정적인 예측을 위해 인공신경망 기반의 예측 모형이 꾸준히 발전하고 있다. 기상인자를 활용하여 기후 변동성을 고려한 수문량 예측은 수자원 및 환경 보존의 장기적인 관리에 효율적으로 활용될 수 있으므로 수문 변수에 유의한 인자의 파악과 이를 활용한 예측 모형의 적용은 꾸준한 도전이 될 것이다. 본 연구에서는 우리나라 한강 유역 댐 유입량에 통계적으로 유의한 상관성이 있는 대표 기상인자를 선정하고, 이를 인공신경망 앙상블 모형에 적용하여 댐 유입량 예측을 수행하였다. 이를 위해 앙상블 경험적 모드분해법을 활용하여 댐 유입량과 기상인자간의 통계적 상관성을 확인하였으며, 기존 단일 인공신경망 모형의 한계를 보완한 인공신경망 앙상블 모형을 구축하였다. 예측 수행 결과, 5개 댐 상관계수 평균이 훈련 기간에서 0.88, 검증 기간에서 0.68의 예측력을 보이는 것을 확인하였으며, 본 연구에서의 절차를 토대로 우리나라의 다양한 수문 변수와 기후 변동성간의 관계를 활용한 다양한 적용 사례가 나오길 기대한다.

수문 시계열 확장을 통한 장기 기후 변동성 분석 (Analysis of long-term climate variability by extending hydrologic time series)

  • 김태림;김한빈;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.308-308
    • /
    • 2019
  • 지구상 해양, 대기 및 대륙 상호간의 연속적인 물의 거동을 나타내는 물의 순환의 주요 과정 중 하나인 유량 자료는 경년부터 수십년간의 다양한 기상학적 변동성을 내포하며 해당 지역의 수문기상학적 특성을 반영한다. 이러한 기상학적 변동성 중에서 비교적 긴 시간 주기를 나타내는 저주파 진동은 전지구적 기후변화의 장기적 영향을 나타내며 해수면 상승, 홍수 또는 가뭄과 같은 극한 수문사상을 나타내는 매우 주요한 지표로 활용되고 있지만 관측된 수문 시계열의 짧은 자료길이로 인하여 통계적 분석의 신뢰성에 한계를 보여왔다. 따라서 과거 수문 시계열의 확장으로 인하여 부재의 영역으로 남아있던 자료 기간의 한계가 보완되면 보다 정확하고 신뢰도 있는 분석이 가능할 것이다. 나무나이테를 활용한 고기후 복원 등의 연구가 증가하고 있지만 공학 분야에서 이를 실제로 활용한 연구는 아직 미비하다. 따라서 본 연구에서는 과거 기후의 정보를 바탕으로 복원된 수문 시계열을 활용하여 수문 시계열에 내재된 장기 기후 변동성을 통계적으로 분석하기 위한 문헌들을 조사하고, 장기적인 시간 흐름에 내재된 잠재적인 경향 및 변동성을 통계적 분석을 파악하고자 한다. 이를 위해 주어진 수문 시계열에 내재된 저주파 신호을 추출하기 위한 경험적 모드분해법을 활용하여 수문 자료에 내재된 장기 변동성을 추출하였으며, 산업화 이전부터 연장된 수문 시계열의 공학적 활용성을 분석하고자 한다.

  • PDF

직교화 기법을 이용한 앙상블 경험적 모드 분해법의 고유 모드 함수와 모드 직교성 (Intrinsic Mode Function and its Orthogonality of the Ensemble Empirical Mode Decomposition Using Orthogonalization Method)

  • 손수덕;하준홍;비자야 P. 포크렐;이승재
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.101-108
    • /
    • 2019
  • In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.

비정상성 빈도해석을 위한 기상인자 선정 및 확률강우량 산정 (Selection of Climate Indices for Nonstationary Frequency Analysis and Estimation of Rainfall Quantile)

  • 정태호;김한빈;김현식;허준행
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.165-174
    • /
    • 2019
  • 수문관측자료에서 비정상성(nonstationarity)이 관측됨에 따라 수공구조물 설계에서 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 대기-해양 시스템에 내재된 기후 변동성은 비정상성 현상과 관련이 있는 것으로 알려져 있지만, 비정상성 빈도해석은 일반적으로 선형적 추세를 기반으로 이루어지고 있다. 본 연구에서는 우리나라의 기후 변동성과 극치 강우 사상의 장기 경향성을 고려하기 위하여 기상인자를 활용한 비정상성 빈도해석을 수행하였다. 먼저, 경향성이 나타나는 11개 기상관측지점의 연 최대치 강우자료에 대하여 통계적 분해 방법인 앙상블 경험적 모드분해법을 활용해 자료에 내재된 장기 경향성을 추출하였으며, 계절에 따른 다양한 기상인자와의 상관성 분석을 수행하였다. 그 결과, 연 최대 강우 발생년도를 기준으로 전년도 가을철 AMM과 전년도 가을철 AMO, 그리고 전년도 여름철 NINO4가 10개 이상의 지점에서 연 최대치 강우자료의 장기 경향성에 유의한 영향을 미치는 것으로 나타났다. 선정된 기상인자를 일반 극치(generalized extreme value, GEV) 분포모형에 적용하여 비정상성 GEV (NS-GEV) 모형을 구축하고 기존의 선형적 추세를 고려한 NS-GEV 모형과의 AIC값을 비교하여 최적모형을 선정하였다. 선정된 모형과 기존의 선형적 추세를 고려한 NS-GEV 모형에 대한 성능 평가를 통해 기상인자를 활용한 NS-GEV 모형이 극치강우사상을 반영하여 확률강우량의 과소산정 문제를 보완할 수 있음을 확인하였다.