Annual Conference on Human and Language Technology
/
2016.10a
/
pp.333-336
/
2016
본 연구에서는 개체명 인식의 성능을 향상시키기 위해, 가중 투표 방법을 이용하여 개체명 인식 모델을 앙상블 하는 방법을 제안한다. 각 모델은 Conditional Random Fields의 변형 알고리즘을 사용하여 학습하고, 모델들의 가중치는 다목적 함수 최적화 기법인 NSGA-II 알고리즘으로 학습한다. 실험 결과 제안 시스템은 $F_1Score$기준으로 87.62%의 성능을 보여, 단독 모델 중 가장 높은 성능을 보인 방법보다 2.15%p 성능이 향상되었다.
Machine learning refers to a model generation technique that can solve specific problems from the generalization process for given data. In order to generate a high performance model, high quality training data and learning algorithms for generalization process should be prepared. As one way of improving the performance of model to be learned, the Ensemble technique generates multiple models rather than a single model, which includes bagging, boosting, and stacking learning techniques. This paper proposes a new Ensemble technique with multiple stacking that outperforms the conventional stacking technique. The learning structure of multiple stacking ensemble technique is similar to the structure of deep learning, in which each layer is composed of a combination of stacking models, and the number of layers get increased so as to minimize the misclassification rate of each layer. Through experiments using four types of datasets, we have showed that the proposed method outperforms the exiting ones.
In this paper, we proposed a face recognition network which attempts to use more facial features awhile using smaller number of training sets. When combining the neural network together for face recognition, we want to use networks that use different part of the facial features. However, the network training chooses randomly where these facial features are obtained. Other hand, the judgment basis of the network model can be expressed as a saliency map through gradCAM. Therefore, in this paper, we use gradCAM to visualize where the trained face recognition model has made a observations and recognition judgments. Thus, the network combination can be constructed based on the different facial features used. Using this approach, we trained a network for small face recognition problem. In an simple toy face recognition example, the recognition network used in this paper improves the accuracy by 1.79% and reduces the equal error rate (EER) by 0.01788 compared to the conventional approach.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.555-558
/
2001
본 논문에서는 인간 행동의 성별 인식문제를 해결하기 위해 여러 개의 전문가(expert) 신경망의 앙상블로 이루어진 결합 신경망 분류기를 제안한다. 하나는 여러 개의 modular 다층퍼셉트론을 계층형으로 결합한 모텔이고, 다른 하나는 modular 다층퍼셉트론들의 출력값을 의사결정트리로 결합하는 모델이다. 데이터 베이스는 남녀 각 13 명의 데이터로 이루어져 있고, 문 두드리기, 손 흔들기, 물건 들어올리기의 세 가지 동작을, 보통 상태 혹은 화난 상태하에서 10 회씩 반복 수행하여 저장하였다. 행위자의 움직임은 몸에 부착된 6 개의 적외선 센서를 사용하여 기록 되었으며, 2 차원 혹은 3 차원 속도 및 좌표가 그 특징값으로 사용되었다. 앙상블 분류기의 성능을 비교하기 위하여 단일 다층퍼셉트론, 의사결정트리, 자기구성지도 및 support vector machine 을 사용한 실험 결과를 보였다. 실험 결과, 신경망 앙상블 모델이 다른 전통적인 분류기 및 사람에 비하여 훨씬 우수한 성능을 보였음을 알 수 있었다.
Kyo-Joong Oh;Ho-Jin Choi;Jinwon Kim;Wonseok Cha;Ilgu Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.477-479
/
2022
본 논문에서는 기업 비즈니스 분석을 위해 한국표준산업분류에 근거하여 국내 사업체의 산업군을 분류하는 앙상블 분류 모델 구축 방법론을 제시한다. 기업 평가 및 보고서 자동화 시스템 구축을 위해 기업의 재무제표 정보, 기업등록부와 같은 신고 정보, 사업체 조사 정보에 포함된 텍스트 정보를 이용하여, 각 기업이 속해 있는 산업군 정보를 분석해야 하며, 이를 통해 동일한 산업군에 속해 있는 다른 기업에 대한 현황 파악 및 비교 등 비즈니스 정보를 분석할 수 있다.
이번 연구에서 우리는 궤적 앙상블을 이용해 1 차원 Ising 모형의 동역학적 상전이를 관측했다. s 앙상블이라고도 불리는 궤적 앙상블은 활성도의 켤레 변수를 도입해 활성도에 편중을 두어 궤적을 추출한 앙상블이다. 평형상태에 있는 1 차원 Ising 모델에서는 외부 자기장이 존재하지 않을 때 상전이가 나타나지 않는다. 하지만 s 앙상블을 통해서 우리는 1 차원 Ising 모형에서 동역학적 상전이가 존재한다는 사실을 발견할 수 있었다. 이동역학적 상전이는 유한 크기 조정 법칙이 잘 적용되며 2 차원 Ising 모형과 같은 보편성 등급을 가진 것을 통해 두 상전이가 서로 연관되어 있다는 것을 알 수 있었다. 또한 열역학적 함수인 에너지와 동역학적 함수인 활성도 사이에 선형관계가 존재하는 점을 통해 동역학적 함수와 열역학적 함수 사이의 관계가 존재하는 것을 확인했다. 마지막으로 또 다른 열역학적인 함수인 자화도에 편중을 두었을 때 동역학적 상전이가 일어나는 임계점이 이동하는 것을 통해 에너지 외의 다른 열역학적 함수도 동역학적 함수와 연관된다는 것을 알아냈다.
Most accidents caused by road icing in winter lead to major accidents. Because it is difficult for the driver to detect the road icing in advance. In this work, we study how to accurately detect road traffic emerging risk using AutoML and CNN's ensemble model that use both structured and unstructured data. We train CNN-based road traffic emerging risk classification model using images that are unstructured data and AutoML-based road traffic emerging risk classification model using weather data that is structured data, respectively. After that the ensemble model is designed to complement the CNN-based classification model by inputting probability values derived from of each models. Through this, improves road traffic emerging risk classification performance and alerts drivers more accurately and quickly to enable safe driving.
Journal of the Computational Structural Engineering Institute of Korea
/
v.36
no.1
/
pp.9-18
/
2023
Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.141-141
/
2017
본 연구에서는 대하천의 8개의 수질인자(수온, 용존산소, 수소이온농도, 전기전도도, 총질소, 총인, 탁도, 클로로필-a)를 예측할 수 있는 인공신경망모델을 개발하였다. 인공신경망모델(ANN)은 수질데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 데이터기반 모델이다. 데이터기반 모델의 특성상 예측정확도를 높이기 위해서 양질의 입력데이터를 구성하는 것이 가장 중요하다. 때문에 각각의 수질인자뿐만 아니라 기상학적 인자 또한 예측을 위한 입력자료로 사용하였으며, 요인분석 및 층화표층추출법을 적용하여 입력데이터를 구성하였고 앙상블기법을 이용하여 추가적으로 예측의 정확도를 향상시켰다. 개발된 모델을 이용하여 지천유입이 있는 북한강의 수질자료를 예측한 결과 탁도를 제외한 7개의 수질인자 모두 0.85 이상의 설명력을 보였으며, 실측값과 예보값을 비교해본 결과 평균적으로 10% 미만의 에러값을 나타냈다. 요인분석을 통하여 연관성있는 인자를 입력인자로 추가한 경우 향상된 결과값을 보였주었으며, 앙상블기법을 적용한 결과 정확도 면에서 큰 향상을 보여주었다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.846-849
/
2024
다양한 분야에서 QR 코드가 급속도로 확산되면서, QR 코드를 악용하여 사용자를 악성 웹사이트로 리디렉션하는 '큐싱(Qshing)'이라는 새로운 형태의 사이버 범죄가 등장했다. 이에 본 연구에서는 일반화 성능을 향상시키기 위해 교차 검증(CV)을 활용하여 QR 코드 스캔과 관련된 악성 URL을 탐지하도록 설계된 스태킹 앙상블 모델을 제안한다. 이러한 통합은 실제 애플리케이션에서 높은 성능을 기대할 수 있도록 설계되었다. 본 연구는 이 모델이 기존의 연구보다 QR 코드 관련 사이버 위협에 대처하는 보다 효과적인 수단을 제공할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.