• 제목/요약/키워드: 앙상블기법

검색결과 301건 처리시간 0.058초

K-RIVER와 Monte Carlo 방법을 이용한 홍수기 간접유량 추정 기법 (A Monte Carlo Simulation and 1D Hydraulic Model-Based Approach for Estimating River Discharge at the Confluence using Artificial Multi-Segmented Rating Curves)

  • 강한솔;김연수;노준우;허영택;변지선;안현욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.483-483
    • /
    • 2023
  • 2020년 8월 섬진강 유역에서 100년 빈도 이상의 대홍수가 발생함에 따라 제방이 붕괴되거나 하천 범람이 발생하는 피해가 발생하였다. 8월 홍수를 대상으로 섬진강 본류 남원(신덕리) 수위국에서 기존의 수위-유량 관계 곡선식(이하 Rating curve)의 최대 적용 가능 수위는 2.53m 이지만, 해당 기간 첨두 수위는 10m 이상을 기록하였다. 이러한 대홍수의 경우 기왕의 관측데이터가 없을 뿐만 아니라 기존의 Rating curve를 외삽하여 활용하는 것에도 한계가 있어 간접적으로 유량을 산정할 수 있는 기법이 필요하다. 본 연구에서는 이와 같이 유량측정이 어려운 지점을 대상으로 주어진 유량에 대하여 수위를 재현할 수 있는 K-water에서 개발된 K-River모형(1차원 하천수리해석모형)과 Monte Carlo 시뮬레이션 기법을 활용하여 간접적으로 유량을 산정할 수 있는 기법을 개발하였다. 개발된 방법론은 고수위 구간에 대한 Rating curve의 불확실성으로 인하여 본류와 지류의 유입량 추정이 어려웠던 섬진강 요천 합류부에 적용하였다. 대상구간은 본류(섬진강) 26km 및 지류(요천) 15km로 구성되어 있으며, 본류와 지류의 상류인 수위국 남원(신덕리) 관측소와 남원(동림교) 관측소에는 각각 기존의 Rating curve가 존재한다. 불확실성이 높은 Rating curve의 고수위 구간에 대한 매개변수를 조정하여 다수의 Rating curve를 생성하고, 이를 기반으로 관측수위를 다수의 상류 시계열 유량자료(경계조건)로 환산하였다. 다음으로 이 유량자료를 기반으로 앙상블 모의를 수행 후 대상구간의 중간지점에 위치한 수위국(고달(고달교) 관측소, 송동(요천대교) 관측소, 곡성(금곡교) 관측소)에서 수위재현성(NSE, RSR등 활용)을 평가하여 최적 샘플 추출을 추출하였다. 추출된 샘플로부터 상류 경계지점의 적정 Rating curve 선정과 각 지점에서의 시계열 수위 및 유량을 역으로 추정하였다. 이를 통해 실제 유량측정결과 없이도 간접적으로 신뢰도 높은 유량 자료를 확보할 수 있음을 확인할 수 있었으며, 향후 수자원의 효율적 관리 및 홍수관리를 위하여 효율적으로 활용이 가능할 것으로 생각된다.

  • PDF

국내 기상정보를 이용한 가뭄전망기법 연구 (A Drought Outlook Study Using Climate Information in Korea)

  • 김영오;이재경;고양수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1590-1596
    • /
    • 2009
  • 최근 기후변화의 영향으로 인한 기상이변으로 인해 세계적으로 많은 피해가 발생하고 있으며, 규모도 점점 커지고 있다. 특히 가뭄에 대한 피해는 더욱 더 심화되는 현상으로 보이고 있다. 본 연구에서는 국내에 적합한 월단위와 주단위 가뭄전망을 제시하였다. 월단위 전망에서는 앙상블 기법을 기반으로 기상청에서 제공하는 월간산업기상정보의 적용에 따른 가뭄전망 정확성을 비교하였다. 주단위 전망에서는 기상청에서 제공하는 GDAPS를 이용하여 확정론적 가뭄전망을 하였다. 가뭄지수로서는 강수, 유량, 지하수위를 인자로 하는 MSWSI(Modified Surface Water Supply Index)를 가뭄지수로 사용하였으며, MSWSI는 5개 구간으로 나누었다. 월단위 가뭄전망에서는 물수지모형인 abcd모형에 과거 강수와 잠재증발산량 시나리오를 입력변수로 하여 최종적으로 유량과 지하수위 시나리오를 생산하여, 확률 가뭄전망을 위해 각 구간의 발생확률을 산정하고 실측자료로부터 산정한 MSWSI와 비교하였다. 정확성 평가를 위해서 RPS(Ranked Probability Score)를 이용하였다. 금강유역에 적용한 결과, 이수기(10월-이듬해 6월)에는 4개 달이 초보전망보다 높았으나 전체 RPS는 1.87로서 초보전망의 1.84보다 높아 현재 월단위 가뭄전망기법에는 많은 불확실성이 존재하였다. 또한 월간산업기상정보를 이용한 월단위 가뭄전망에서도 초보전망보다 정확성이 낮아, 현재 중장기 기상정보를 이용하기에는 어려운 것으로 나타났다. 주단위 가뭄전망에서는 abcd모형에 GDAPS를 입력변수로 하여 확정론적 MSWSI를 산정하여 실측자료로부터 산정한 MSWSI와 비교하였으며, Hit ratio를 이용하여 그 정확성을 평가하였다. 주단위 가뭄전망 결과, 주단위 가뭄전망의 Hit ratio가 0.480으로서 초보전망보다 높아 주단위 가뭄전망은 효용성이 있음을 입증하였다. 본 연구에서 적용기간이 짧아 가뭄전망의 정확성을 판단하기는 이르나, 월단위 가뭄전망에서는 기상정보의 정확성이 향상에 따라 가뭄전망의 정확성도 향상될 것으로 판단된다. 장기적으로 본 연구 결과를 토대로 단기와 중장기 가뭄전망을 수행하고 평가한다면, 가뭄전망에 대한 신뢰도가 더 높아질 것으로 사료된다.

  • PDF

다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발 (Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble)

  • 김태정;김기영;권현한
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.327-340
    • /
    • 2015
  • 기후모형으로 가장 널리 사용되는 GCM의 불확실성 및 시공간적 편의로 인하여 GCM으로부터 생산된 기상정보를 응용수문분야에서 직접적으로 이용하기 위해서는 상세화 과정이 필수적으로 요구된다. 본 연구에서는 선행연구에서 개발된 비정상성 은닉 마코프 모형(Non-stationary Hidden Markov Chain Model, NHMM)을 기반으로 다지점 공간상관성을 고려할 수 있는 Chow-Liu Tree 알고리즘과 결합하여 유역단위 강우시나리오 상세화 기법(CLT-NHMM)으로 확장하였으며, 낙동강 유역에 적용하여 적용성을 평가하였다. 상관행렬(correlation matrix)을 통한 강우네트워크의 공간상관성 평가결과 유역상관성이 우수하게 모의하는 것을 확인하였으며, 강수의 빈도 및 양적 관점에서 효과적인 모의가 가능하였다. 본 연구에서 제시한 CLT-NHMM 모형은 수자원뿐만 아니라 수문자료를 입력 자료로 하는 농업, 보건, 환경 및 에너지 등 다양한 응용기상분야에 핵심 기술로 활용이 전망된다.

랜섬웨어 탐지를 위한 머신러닝 기반 암호화 행위 감지 기법 (A Machine Learning-Based Encryption Behavior Cognitive Technique for Ransomware Detection)

  • 황윤철
    • 산업융합연구
    • /
    • 제21권12호
    • /
    • pp.55-62
    • /
    • 2023
  • 최근 등장하는 랜섬웨어들은 다양한 공격 기법과 다양한 경로를 통해 공격을 수행하고 있어 조기 탐지와 방어에 많은 어려움을 겪고 있으며, 그 피해 규모도 날로 증가하고 있다. 따라서 본 논문에서는 효과적인 랜섬웨어 탐지를 위하여 파일 암호화와 암호화 패턴을 머신러닝 기반으로 하는 감지 기법을 제안한다. 파일 암호화는 랜섬웨어가 공격하는데 필수적으로 사용하는 기능으로 암호 행위와 암호화 패턴을 분석함으로써 랜섬웨어를 탐지하고 랜섬웨어의 특정 변종이나 새로운 유형의 랜섬웨어를 탐지할 수 있기 때문에 랜섬웨어 공격을 식별하고 차단하는 데 매우 효과적이다. 제안한 머신러닝 기반의 암호화 행위 감지 기법은 암호화 특성과 암호화 패턴 특성을 추출하여 머신러닝 기반의 분류기를 통해 각각 학습을 시켜 해당 행위에 대한 탐지를 진행하고 최종 결과는 두 분류기의 평가 결과를 기반으로 앙상블 분류기에서 랜섬웨어 유무를 판별하여 좀 더 정확도를 높였다. 또한, 제안한 기법을 numpy와 pandas, 파이썬의 사이킷런 라이브러리를 사용하여 구현하여 평가지표를 사용한 성능를 평가한 결과 평균적으로 94%,의 정확도와 95%의 정밀도, 93%의 재현률과 95%의 F1 스코어가 산출되었다. 성능 평가 결과를 보면 암호화 행위 감지를 통해 랜섬웨어 탐지가 가능하다는 것을 확인할 수 있었고 랜섬웨어의 사전 탐지를 위해 제안한 기법의 성능을 높이기 위한 연구도 계속해서 진행되어야 한다.

행동 인식을 위한 시공간 앙상블 기법 (Spatial-temporal Ensemble Method for Action Recognition)

  • 서민석;이상우;최동걸
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.385-391
    • /
    • 2020
  • As deep learning technology has been developed and applied to various fields, it is gradually changing from an existing single image based application to a video based application having a time base in order to recognize human behavior. However, unlike 2D CNN in a single image, 3D CNN in a video has a very high amount of computation and parameter increase due to the addition of a time axis, so improving accuracy in action recognition technology is more difficult than in a single image. To solve this problem, we investigate and analyze various techniques to improve performance in 3D CNN-based image recognition without additional training time and parameter increase. We propose a time base ensemble using the time axis that exists only in the videos and an ensemble in the input frame. We have achieved an accuracy improvement of up to 7.1% compared to the existing performance with a combination of techniques. It also revealed the trade-off relationship between computational and accuracy.

지상파DMB에서 끊김없는 프로그램의 전환을 위한 스플라이서의 설계 및 구현 (Design and Implementation of a Splicer for Seamless Swiching between Programs in the Terrestrial DMB)

  • 이용훈;이진환;이광순;이수인;김남
    • 한국통신학회논문지
    • /
    • 제31권5A호
    • /
    • pp.537-545
    • /
    • 2006
  • 본격적인 지상파DMB 서비스가 시작됨에 따라, 중앙 또는 다른 방송국으로부터 들어오는 방송신호를 재송신하던 도중에 지방의 방송국에서 필요한 지역광고 및 특정 프로그램을 보내고자 하는 경우에 스플라이싱 기법이 필요하게 된다. 본 논문에서는 MPEG-4 및 MPEG-2 시스템을 동시에 사용하고 있는 지상파DMB에서 효율적인 스플라이싱을 위해 요구되는 신호 흐름에 대해 제안하며, 지상파DMB에서 신호 전송 시 사용되는 앙상블스트림으로의 재구성 과정에 대해 설명한다. 또한, 설계된 DMB 스플라이싱 기술을 적용하여 제작된 스플라이서를 통해서 전송스트림을 스위칭했을 때, 수신기에서 영상을 디코딩하여 비교함으로써 그 성능을 검증하였다.

사례 선택 기법을 활용한 앙상블 모형의 성능 개선 (Improving an Ensemble Model Using Instance Selection Method)

  • 민성환
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.105-115
    • /
    • 2016
  • Ensemble classification involves combining individually trained classifiers to yield more accurate prediction, compared with individual models. Ensemble techniques are very useful for improving the generalization ability of classifiers. The random subspace ensemble technique is a simple but effective method for constructing ensemble classifiers; it involves randomly drawing some of the features from each classifier in the ensemble. The instance selection technique involves selecting critical instances while deleting and removing irrelevant and noisy instances from the original dataset. The instance selection and random subspace methods are both well known in the field of data mining and have proven to be very effective in many applications. However, few studies have focused on integrating the instance selection and random subspace methods. Therefore, this study proposed a new hybrid ensemble model that integrates instance selection and random subspace techniques using genetic algorithms (GAs) to improve the performance of a random subspace ensemble model. GAs are used to select optimal (or near optimal) instances, which are used as input data for the random subspace ensemble model. The proposed model was applied to both Kaggle credit data and corporate credit data, and the results were compared with those of other models to investigate performance in terms of classification accuracy, levels of diversity, and average classification rates of base classifiers in the ensemble. The experimental results demonstrated that the proposed model outperformed other models including the single model, the instance selection model, and the original random subspace ensemble model.

앙상블 기법을 이용한 선박 메인엔진 빅데이터의 이상치 탐지 (Outlier detection of main engine data of a ship using ensemble method)

  • 김동현;이지환;이상봉;정봉규
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.384-394
    • /
    • 2020
  • This paper proposes an outlier detection model based on machine learning that can diagnose the presence or absence of major engine parts through unsupervised learning analysis of main engine big data of a ship. Engine big data of the ship was collected for more than seven months, and expert knowledge and correlation analysis were performed to select features that are closely related to the operation of the main engine. For unsupervised learning analysis, ensemble model wherein many predictive models are strategically combined to increase the model performance, is used for anomaly detection. As a result, the proposed model successfully detected the anomalous engine status from the normal status. To validate our approach, clustering analysis was conducted to find out the different patterns of anomalies the anomalous point. By examining distribution of each cluster, we could successfully find the patterns of anomalies.

비선형 앙상블 모형을 이용한 수문량 예측 (Hydrologic Variable Prediction Using Nonlinear Ensemble Model)

  • 권현한;김민지;김장경;나봉길
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.359-359
    • /
    • 2011
  • 기존 수자원계획에 있어서 수문량 예측은 매우 제한적으로 활용되고 있는 실정으로서 최근 기후변화 및 이상기후로 기인하는 기상학적 불확실성 증가에 대해서 효과적으로 대응 하기가 어렵다. 본 연구에서는 기상인자를 활용한 수문변량 예측기법을 개발하고자 하며 국내에 수문자료가 충분한 지역에 대해서 모형의 적합성과 타당성을 평가하고자 한다. 대부분의 수문변량은 해수면온도, 해수면기압, 바람장 등 Large Scale의 기상학적 특성과 연관성을 가지고 있으며 선행시간을 가지고 수문순환에 영향을 주고 있다. 수문변량과 기상학적 변량사이에는 일반적으로 비선형 관계를 가지고 있는 것으로 알려지고 있으며 이러한 비선형 관계를 효과적으로 예측하기 위해서 본 연구에서는 비선형 예측모형을 개발 하고자 한다. 최근 비선형 예측모형에서 불확실성을 고려한 모형에 대한 연구가 활발히 진행되고 있으며 특히, 다중 모형을 사용한 Ensemble 개념의 예측모형 도입이 이루어지고 있다. 본 연구에서는 국내 다목적댐 유입량 및 강수량에 대해서 최적 기상변량을 도출하고 이를 활용한 비선형 Ensemble 예측모형을 개발하였다. 일반적인 선형 회귀분석 모형에 비해 기상현상과 수문현상에 비선형성을 효과적으로 재현할 수 있는 장점을 확인할 수 있었으며 이와 더불어 예측결과에 대한 불확실성을 제공함으로서 신뢰성 있는 수자원 계획을 위한 기초자료로서 활용이 가능할 것으로 판단된다.

  • PDF

인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구 (A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network)

  • 박진욱;박상현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권12호
    • /
    • pp.565-572
    • /
    • 2017
  • 본 연구는 기존의 수요 예측 등의 시계열 연구에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial neural network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 훈련 자료로는 2015년 3월부터 9월까지의 일별 KBO 관중 수 자료를 대상으로 하였다. 전방향 신경망(Feedforward neural network)의 모형 훈련 과정에서, 그리드 탐색(Grid search)을 적용하여 최적의 초모수(Hyperparameter)를 찾고자 하였다. 그 결과, 그리드 탐색법의 최적 모형을 이용한 평균 절대 백분율 오차(MAPE)는 평균 20.9% 였다. 앙상블 기법을 이용한 모형의 MAPE는 평균 20.0%였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 26.3%, 30.3% 높은 예측력을 보인다.