• Title/Summary/Keyword: 압축 천연가스

Search Result 172, Processing Time 0.024 seconds

Nanoparticles Emission Characteristics of Heavy-Duty CNG Engine with Oxidation Catalyst (산화촉매를 장착한 대형 CNG 엔진의 나노입자 배출특성)

  • Kim, T.J.;Kim, H.N.;Choi, B.C.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.27-33
    • /
    • 2008
  • Natural gas has been considered one of the most promising alternative fuels for transportation because of its abundance as well as its ability to reduce regulated pollutants. We measured emission characteristics of nanoparticles from lean burn H/D(Heavy-Duty) CNG (Compressed Natural Gas) engine equipped with oxidation catalysts. The experiments were carried out to measure the emission and engine performance according to the ESC test cycle. The CO and THC conversion efficiencies on the best catalyst in the ESC test cycle achieved about 91 % and 83 %, respectively. From the measurement by the SMPS, the number of nanoparticles emitted from H/D CNG engine is reduced by about 99 % which is more than that of 2.5 L diesel engine. The particle number concentrations of H/D CNG engine were almost nanoparticles. Nanoparticles smaller than 30 nm emitted from the H/D CNG engine and diesel engine equipped with a CDPF(Catalyzed Diesel Particulate Filter) were quite similar. However, the particles bigger than 30nm from the CNG engine were smaller than the particles from diesel engine equipped with a CDPF. The higher the CNG engine load, the lower the particle number from engine-out, but it increased slightly at full load.

  • PDF

A Study on the Development of a Hybrid Fiber Reinforced Composite for a Type 4 CNG Vessel (CNG용 Type 4 하이브리드 섬유 복합재 용기 개발에 대한 연구)

  • Cho, Sung-min;Cho, Min-sik;Jung, Geunsung;Lee, Sun-kyu;Lee, Seung-kuk;Park, Ki-dong;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • The objective of this study is to develop and commercialize an on-board fuel storage system for CNG vehicles. A type 4 vessel is made of resin-impregnated continuous filament windings on a polyamide (PA6) liner. In particular, this study localized the PA6 liner's fabrication and development. To analyze the filament winding, a specimen test was performed, and the results were verified values obtained using finite element analysis. In this study, the filament winding and fibers were optimized for a 207 bar composite cylinder in a compressed natural gas vehicle.

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

Feedback Control using Dual O2 Sensors for Improving the Conversion Efficiency of a Three-way Catalyst in a Heavy-duty CNG Engine (CNG 대형엔진에서 이중 O2 센서를 활용한 피드백 제어를 통한 삼원촉매 정화효율 향상)

  • Yoon, Sungjun;Lee, Junsun;Park, Hyunwook;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2019
  • In this study, feedback logic using dual O2 sensor values were developed to increase the purification capability of a three-way catalyst (TWC) in a compressed natural gas (CNG) engine. A heavy-duty inline 6-cylinder engine was used and the CNG was supplied to the engine through a mixer. This study consists of two main parts, namely, the proportional integral (PI) control with a front O2 sensor and the feedback control with dual O2 sensors. In the PI control experiment, effects of various parameters, such as P gain, I gain, and lean delay, on the TWC capability were identified. Based on the results of the PI control experiment, the feedback logic using dual O2 sensor values were developed. In both cases, the nitrogen oxides (NOX) emissions were nearly zero. However, the carbon monoxide (CO) emissions were reduced significant in the feedback logic with dual O2 sensors than in the PI control with the front O2 sensor.

Performance and Emission Characteristics of Dual-fuel(Diesel-CNG) Combustion in a Diesel Engine (디젤엔진에서 경유-CNG 혼합 연소의 성능 및 배기 특성)

  • Ryu, Kyung-Hyun;Park, Jin-Chul;Choi, Kyu-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.132-139
    • /
    • 2010
  • This paper describes an investigation of the performance and emission characteristics of a commercial cylinder direct injection diesel engine operating on natural gas with pilot diesel ignition. Engine tests for variations in the pilot injection timing were performed at an engine speed of 1500 rpm. This study showed that the performance of the dual-fuel diesel engine increased as the engine load increased and as the pilot diesel injection timing angle advanced. The peaks of cylinder pressure, pressure rise rate, and heat release rate all increased while the fuel ignition timing advanced with the pilot injection timing. The engine operation was stable, and the least smoke was produced at a pilot injection timing of $12^{\circ}$ before top dead center. NOx emissions were only exhausted under high-load conditions, and they increased as the pilot injection timing angle advanced.

Mixing and Combustion Characteristics of a CNG and Air according to Fuel Supply Conditions in a DI Engine (직분식 엔진에서 연료공급 조건에 따른 CNG와 공기의 혼합 및 연소특성)

  • Kang, Jeong-Ho;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • It was investigated how fuel injection timing - early injection and later injection - in conjunction with throttle open rate effect the fuel-air mixing characteristics, Engine power, combustion stability and emission characteristics on a DI CNG spark Engine and control system that had been modified and designed according to the author's original idea. It was verified that the combustion characteristics were changed according to fuel injection timings and Engine conditions determined by different throttle open rates and rpm. It was found that the combustion characteristics greatly improved at the complete open throttle rate with an early injection timing and at the part throttle rate with a late injection timing. Combustion duration was governed by flame propagation duration in a late injection timing and by an early flame development duration in an early injection timing. As the result, we discovered that combustion duration is shortened, lean limit is improved, air-fuel mixing conditions controlled, and emissions reduced through control of fuel injection timing according to change of the throttle open rate.

  • PDF

Reliability analysis of LNG unloading arm considering variability of wind load (풍하중의 변동성을 고려한 LNG 하역구조물의 신뢰성해석)

  • Kim, Dong Hyawn;Lim, Jong Kwon;Koh, Jae Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.223-231
    • /
    • 2007
  • Considering wind speed uncertainty, reliability analysis of the LNG unloading arm at Tongyoung Production Site was performed. Extreme distribution of wind speed was estimated from the data collected at the weather center and wind load was calculated using wind velocities and coefficients of wind pressure. The unloading arm was modeled with plate and solid elements. Contact elements were used to describe the interface between base of structure andground. Response surface for maximum effective stress was found for reliability analysis and then reliability functions was defined and used to determine exceeding probability of allowable and yield stresses. In addition, sensitivity analysis was also performed to estimate the effect of possible material deterioration in the future.

Geotechnical Characteristics of the Ulleung Basin Sediments, East Sea (2) - Microstructure, Mineralogy, and Strength Parameters (동해 울릉분지 심해토의 지반공학적 특성(2) - 미세구조특성, 광물특성 및 강도특성에 관한 연구)

  • Kim, Youngmoon;Lee, Jongsub;Lee, Jooyong;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.49-56
    • /
    • 2013
  • The necessity of exploration in deep sea increases to develop the natural resources. The deep marine sediments, which were recovered from the hydrate occurrence regions during the Ulleung Basin Gas Hydrate Expedition 2 (UBGH2), East Sea, Korea in 2010, are explored to obtain the geotechnical characteristics and strength parameters. The index properties of the specimens including the atterberg limits, specific surface, and particle size distribution are measured and compared with the previous studies. X-ray diffraction, scanning electron microscope, and X-ray energy dispersive spectroscopy are conducted to analyze the clay mineralogy, chemical composition, and microstructure of the sediments. Strength parameters and shear wave velocities are measured with the axial strain by using an instrumented triaxial device. The strength parameters estimated by empirical equations are compared with the experimental results.

Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System (NO96타입 LNG 방열시스템 Divinycell의 극저온 압축 강도 평가)

  • Choe, Yeong-Rak;Kim, Jeong-Hyeon;Kim, Jong-Min;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-355
    • /
    • 2016
  • Divinycell, which functions as both insulation and a supporting structure, is generally applied in the NO96-type liquefied natural gas (LNG) insulation system. Polymer-material-based Divinycell, which has a high strength and low weight, has been widely used in the offshore, transportation, wind power generation, and civil engineering fields. In particular, this type of material receives attention as an insulation material because its thermal conductivity can be lowered depending on the ambient temperature. However, it is difficult to obtain research results for Divinycell, even though the component materials of the NO96-type LNG cargo containment system, such as 36% nickel steel (invar steel), plywood, perlite, and glass wool, have been extensively studied and reported. In the present study, temperature and strain-rate dependent compressive tests on Divinycell were performed. Both the quantitative experimental data and elastic recovery are discussed. Finally, the mechanical characteristics of Divinycell were compared to the results of polyurethane foam insulation material.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.