• Title/Summary/Keyword: 압축응력을 도입

Search Result 90, Processing Time 0.023 seconds

Application of the Homogenization Method for Estimation of the Shear Characteristics in Composite Soil Including an Oyster Shells (굴패각을 포함한 혼합토의 전단.변형 특성 평가를 위한 균질화법의 적용)

  • 이기호;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.183-190
    • /
    • 2001
  • 굴패각을 혼합한 해성점토를 매립재료로 활용하기 위한 기초 자료를 얻기 위해, 혼합토의 전단.변형특성을 검토했다. 또한 삼축압축실험과 균질화이론을 근거로 한 수치해석에 의해 혼합재(굴패각)의 겉보기 탄성계수를 구하기 위한 방법을 제안했다. 일련의 실험결과로부터, 굴패각의 혼합에 의해 점토의 전단.변형특성이 개선됨을 확인했고, 굴패각의 겉보기 탄성계수를 구하기 위해 미시구조를 검토할 수 있는 균질화법을 도입했다. 굴패각의 겉보기 탄성계수는 굴패각의 골격구조의 변화에 기인해 변화하고 선행압밀응력이 작은 경우에 그 영향이 크게 나타나는 것을 알 수 있었다.

  • PDF

Behavior and Improvement of Construction Crack occurred on Anchorage of PSC-edge Girder Rahmen Bridge (PSC-Edge 거더 라멘교의 정착부에 발생한 시공 균열 거동과 개선)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.569-576
    • /
    • 2019
  • PSC-Edge Rahmen Bridge makes low thickness and long span by introducing prestressed force to the edge girder and reducing positive moment. In the bridge, diagonal tension cracks occurred in the direction of $45^{\circ}$ to outer side of the girder after the temporary bent supported on the lower part of the upper slab and the secondary strand is tensioned on the girder. Researches on stress distribution and burst crack behavior of pre-stress anchorage has been conducted, it is difficult to analyze an obvious cause due to difference between actual shape and boundary condition. This study performed 3D frame analysis with additional boundary condition of temporary bent, the maximum compression stress occurred in the girder and there was a limit to identify the cause. It performed 3D Solid analysis with LUSAS 16.1 and the maximum principal tensile stress occurred at the boundary between the girder and the slab. As analyzing required reinforcement quantity at obtuse angle of the girder with the maximum principal tensile stress and directional cosine, reinforcement quantity was insufficient. Additional bridges have increased reinforcement quantity and extended area and crack was not occurred. It is expected that cracks on the girder during construction could be controlled by applying the proposed method to PSC-Edge Rahmen Bridge.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

Bending Behavior of Preservative Treated Pitch Pine Stress-Laminated Timber (방부처리 리기다소나무 응력적층재의 휨거동 특성)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Kim, Byoung-Nam
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.306-315
    • /
    • 2010
  • The stress laminated timber, which could be manufactured by small dimension lumber on construction site, has high possibilities for bridges in remote area, such as recreation forest or forest road, because those bridges may be short span and low frequency in use. The stress laminated timber has merits of easiness for preservative treatment and transportation because it is manufactured with small dimension lumber. This study was carried out to analyze performances of stress laminated timber manufactured with preservative treated domestic pitch pine for developing structural design data for stress laminated timber bridges for vehicular traffic. Perpendicular to grain compressive performance by preservative treatment and bending performance by bored holes of pitch pine lumber was analyzed. Then, the effects of bending performance by pre-stress pressure, distance of bolts, number of laminations and planning were analyzed. Conclusively, planning of lumber was not necessary for manufacturing stress laminated timber, and 80% of bending stiffness criteria was maintained as pre-stress pressure was higher than 3.0 kg/$cm^2$. However, further researches are needed to define the effects of bolt distances and number of laminations. The results of this research would be basic data for design stress laminated timber bridges for vehicular traffic in Korea.

An Experimental Study of the Long-term Creep characteristic of High Damping Rubber Bearings (고감쇠 고무받침의 장기 크리프 특성에 대한 실험적 연구)

  • Oh, Ju;Park, Jin-Young;Park, Kun-Nok;Kim, See-Dong;Park, Sung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Isolated structures use devices such as high damping rubber bearings (HDRB) in order to dramatically reduce the seismic forces transmitted from the substructure to the superstructure. The laminated rubber bearing is the most important structural member of a seismic isolation system. The basic characteristics of rubber bearings have been confirmed through compression tests, compressive shearing tests and creep tests. This paper presents the results and analysis of a 1000hr, ongoing creep test conducted at 7.5MPa, 8.37MPa in our laboratory. The long-term behavior of bridge bearings, such as high-damping rubber bearings, will be discovered through a compression creep test subjected to actual environmental conditions. These tests indicated that the maximum creep deformation is about $0.3{\sim}1.92%$ of total rubber thickness.

Steel Jacketing Method without Grouting for RC Columns (그라우팅이 필요 없는 RC기둥 강판보강 기법)

  • Choi, Eun Soo;Cho, Sung Chul;Chung, Young Soo;Cho, Baik Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.55-65
    • /
    • 2008
  • This study introduced a new method to retrofit RC columns with lap splice that do not have enough ductility during an earthquake. The new method used mechanical external pressure and split steel plates around the RC columns. The introduced method does not require grouting the gap between jacket and concrete surface. In this study, 45 concrete cylinders were manufactured with varyingstrengths and part of them was retrofitted with split steel jackets under a lateral confining stress. The effect of the new method was verified by comparing the results from the compressive tests of retrofitted and unretrofitted cylinders. The steel jacket that was built following the new method showed good results of increasing the compressive strength and ductility of concrete cylinders. The thicker steel jackets showed larger compressive strength, however, the ductility at failure depends on their welding quality.

Bond Characteristics of High-Strength Light-Weight Concrete (고강도 경량 콘크리트의 부착특성)

  • Shin, Sung-Woo;Lee, Kwang-Soo;Choi, Myung-Shin;Kim, Hyun-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.77-84
    • /
    • 1999
  • Recently, it is increased the use of High-Strength Light-Weight Concrete(HLC) in the high-rise buildings and mega-structures. But there are a few research on the bond behavior of HLC, so it need to study about that. The present study was performed to investigate the bond characteristics of HLC. Major test variables include concrete compressive strength(f'c), concrete cover(c), bond length (${\ell}_{db}$), and bar diameter($d_b$). Test results indicate that the bond stress of HLC is increased with the increment of $\sqrt{f'_c}$ and concrete cover, bond stress is decreased with increment of bond length and bar diameter. And the final failure mode such as splitting or pullout failure is significantly affected by the concrete cover to bar diameter ratios(C/$d_b$). Test results were compared with ACI code and other proposed equations. The bond stress of HLC is higher than that of normal-strength normal-weight concrete, but lower than that of high-strength normal-weight concrte. Considering the present test results, modification factor(${\lambda}$= 1.3) of bond length in ACI 318-95 code for light-weight concrete is may have to be reviewed to apply to HLC.

Numerical Evaluation of Stress Loss Rates and Adjusting Coefficients due to Internal and External Constraints of Concrete Long-Term Deformation (콘크리트 장기변형의 내·외부 구속에 의한 응력 손실률 및 수정계수 평가의 전산구조해석)

  • Yon, Jung-Heum;Kim, Hyun-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • An object oriented numerical analysis program of axial-flexural elements and the step-by-step method (SSM) has been developed to analyze concrete long-term behaviors of structures constrained internally and externally. The results of the numerical analysis for simple and continuous prestressed (PS) concrete box and composite girders, pre-cast slab of continuous steel composite girder, and simple preflex composite girder show that the adjusting coefficient decreases by increasing constraint. The loss rates of pre-tension force were not sensitive but those of pre-compression force were increased rapidly by decreasing adjusting coefficient. This indicates that the design based on the loss rate of pre-tension can over-estimate the pre-compression force in a concrete section constrained internally and externally. The adjusting coefficients which satisfy results of the numerical analysis are 0.35~0.95, and it can be used as an index of constraint of concrete long-term deformation. The adjusting coefficient 0.5 of Bridge Design Specifications can under-estimate residual stress of PS concrete slab, and the coefficient 0.7 or 0.8 of LRFD Bridge Designing Specifications can under-estimate the loss rates of continuous PS concrete girders. The adjusting coefficient of hybrid structures should be less then 0.4.

The Effect of Blast Cleaning for Steel Bridge Painting on Fatigue Behavior of Out-of-Plane Gusset Welded Joints (강교 도장용 블라스트 처리가 면외거셋 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Le, Van Phuoc Nhan;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.583-590
    • /
    • 2008
  • Blasting has been applied in newly-built steel structures for cleaning forged surfaces and increasing the adhesive property of applied painting systems. However, the effect of the blast cleaning on fatigue behavior of welded joints is not clear. In this paper, fatigue tests were carried out on out-of-plane gusset welded joints and the effect of the blast cleaning on the fatigue behavior was studied. The curvature radius at the weld toe of the surface-treated specimens by using the blast method is larger than that of as-welded specimens. By the blast cleaning compressive residual stresses were induced into weld toes. The experimental results showed that the fatigue life of surface-treated specimens is longer than that of as-welded specimens, even though the fatigue life of surface-treated specimens and that of as-welded specimens are not clearly different in the high stress range. About a 160% increase in fatigue limit could be realized by using blast cleaning.

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 1991
  • An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).

  • PDF