• Title/Summary/Keyword: 압축수소가스

Search Result 90, Processing Time 0.023 seconds

Comparative Investigation of Convective Heat Transfer Coefficients for Analyzing Compressed Hydrogen Fueling Process (압축 수소 충전 공정 해석을 위한 대류 열전달 계수 비교 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.123-133
    • /
    • 2023
  • Commercial hydrogen fuel cell vehicles are charged by compressing gaseous hydrogen to high pressure and storing it in a storage tank in the vehicle. This process causes the temperature of the gas to rise, to ensure the safety to storage tanks, the temperature is limited. Therefore, a heat transfer model is needed to explain this temperature rise. The heat transfer model includes the convective heat transfer phenomenon, and accurate estimation is required. In this study, the convective heat transfer coefficient in the hydrogen fueling process was calculated and compared using various correlation equations considering physical phenomena. The hydrogen fueling process was classified into the fueling line from the dispenser to the tank inlet and the storage tank in the vehicle, and the convective heat transfer coefficients were estimated according to process parameters such as mass flow rate, diameter, temperature and pressure. As a result, in the case of the inside of the filling line, the convective heat transfer coefficient was about 1000 times larger than that of the inside of the storage tank, and in the case of the outside of the filling line, the convective heat transfer coefficient was about 3 times larger than that of the outside of the storage tank. Finally, as a result of a comprehensive analysis of convective heat transfer coefficients in each process, it was found that outside the storage tank was lowest in the entire hydrogen fueling process, thus dominated the heat transfer phenomenon.

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.

Numerical Study of Flame Stability of Turbulent Combustion in a Dual Combustion Ramjet (이중연소 램제트 엔진의 난류 연소 현상과 화염 안정성)

  • Choi, Jeong-Yeol;Han, Sang-Hoon;Kim, Kyu-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.371-374
    • /
    • 2011
  • High-resolution numerical study is carried out to investigate the flame stability of the turbulent supersonic combustion in a Dual-Combustion Ramjet (DCR). The auto-ignition in a shear layer between hydrogen/carbon-monoxide syngas and air was studied at elevated enthalpy condition. Comparison of a constant area combustor and a combustor with a small divergence angle shows that the supersonic combustion has a characteristics of the lifted flame and its stability is influenced significantly by the compressibility.

  • PDF

Benefit Analysis of CNG as an Automobile Fuel (자동차연료로서 CNG의 경제성 분석)

  • Cho, Haeng-Muk;Mahmud, Md. Iqbal
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The adoption of compressed natural gas (CNG) as a vehicle fuel is a common phenomenon as it is accelerating worldwide. Increasing number of CNG driven vehicles around the world has jumped up from one million in 1996 to five million in 2006. CNG as a vehicle fuel is very popular to the end users because of its clean-burning properties and cost effective solution compared to other alternative fuels like diesel and gasoline. The use of CNG as a fuel reduces vehicular emission that is consisted of carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen ($NO_x$), carbon dioxide ($CO_2$) etc. This research highlights the characteristics of CNG vehicles, CNG arrangement in the vehicles, CNG fueling procedures and most importantly the environmental and economic factors that are highly considered as cost effective solution for the flexibility of using CNG in the automobiles.

Research of Biofuel Syngas Production Using Superadiabatic Compression Spark Ignition Reformer (초단열 압축스파크 점화개질기를 이용한 바이오 합성가스 생산 연구)

  • Lim, Mun-Sup;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • Increasing environmental concerns regarding the use of fossil fuels and global wanning have prompted researcher to investigate alternative fuels. The purpose of this study is to investigate the syngas production by biogas reforming using a compression spark ignition engine. The parametric screening studies were carried out according to the variations of oxygen enrichment rate, biogas $CO_2$ ratio, intake gas temperature, and engine revolution. When the oxygen enrichment rate and input gas temperature increased, hydrogen and carbon monoxide were increased. But the biogas $CO_2$ ratio and engine revolution increased, the syngas were reduced. For the reforming of methane 100% only, generation of hydrogen and carbon monoxide was 58% and 17%, respectively. However when the biogas $CO_2$ ratio was 40%, hydrogen and carbon monoxide concentration were about 20% each.

An Analysis on the Effects of EGR to Extend Operation Region for a HCCI Hydrogen Engine (HCCI 수소기관에서 운전영역확장을 위한 EGR 효과 분석)

  • LEE, KEONSIK;KIM, JINGU;BYUN, CHANGHEE;LEE, JONGTAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.560-566
    • /
    • 2015
  • HCCI (Homogeneous Charge Compression Ignition) hydrogen engine has relatively narrower operation range caused by knock occurrence due to the rapid pressure rising by using higher compression ratio. In this study, EGR as one of the countermeasure methods is considered to extend operation range of HCCI hydrogen engine. Also, the effects of hydrogen EGR are compared with the effects of EGR using hydrocarbon fuel. Hydrocarbon EGR is carried out by adding carbon dioxide to exhaust gas of HCCI hydrogen engine. As the results, EGR has positive effects on a HCCI hydrogen engine in reducing rate of pressure rise as same as the other engines used hydrocarbon fuels. However, the effects of hydrogen EGR are better than those of hydrocarbon EGR in decreasing minimum compression ratio and rate of pressure rise. When applying EGR to HCCI hydrogen engine by 20% rate, the rate of pressure rise decreases by 58% and it results in about 48% increase of the operation range in terms of supply energy.

A Study on Safety of Hydrogen Station (수소충전소의 안전성에 관한 연구)

  • Ko, Jae-Wook;Lee, Dae-Hee;Jung, In-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • A safety assessment was performed through the process analysis of hydrogen station. The purpose of this study provides basic information for the standard establishment about hydrogen stations. The processes of hydrogen stations were classified by four steps (process of manufacture, compression, storage, charge). FMEA (Failure Mode and Effect Analysis) method was applied to evaluate safety. Each risk element is following; S (severity), O (occurrence), D (detection). And the priority of order was decided by using RPN (Risk Priority Number) value multiplying three factors. Scenarios were generated based on FMEA results. And consequence analysis was practiced using PHAST program. In the result of C.A, jet fire and explosion were shown as accident types. In case of leakage of feed line in PSA process, concentration of CO gas is considered to prevent CO gas poisoning when the raw material that can product CO gas was used.

  • PDF

Technical Trends of Hydrogen Manufacture, Storage and Transportation System for Fuel Cell Vehicle (연료전지자동차용 수소제조와 저장·운반기술동향)

  • Kil, Sang-Cheol;Hwang, Young-Gil
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2016
  • The earth has been warming due to $CO_2$ gas emissions from fossil fuel cars and a ship. So the hydrogen fuel cell vehicle(FCV) using hydrogen as a fossil fuel alternative energy is in the spotlight. Hyundai Motor Company of Korea and a car companies of the US, Japan, Germany is developing a FCV a competitive. Obtained hydrogen as a by-product of the coke plant, oil refineries, chemical plants of steel mill, coal is reacted with steam at high temperatures, methane gas, manufacture of high purity hydrogen Methane Steam Reforming and hydrogen detachable reforming method using the Pressure Swing Adsorption or Membrane Reforming technical or decomposition of water to produce electricity. Hydrogen is the electronic industry, metal and chemical industries, which are used as rocket fuel, etc. are used in factories, hospitals, home of the fuel Ene.Farm system or FCV. And a method of storing hydrogen is to store liquid hydrogen and a method for compressing normal hydrogen to the hydrogen container, by storing the latest hydride or Organic chemical hydride method is used to carry the hydrogen station. Korea is currently 13 hydrogen stations in place and in operation, plans to install a further 43 places.

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.