• Title/Summary/Keyword: 압축성 경계층

Search Result 62, Processing Time 0.021 seconds

EFFECTS OF TURBULENCE MODEL AND EDDY VISCOSITY IN SHOCK-WAVE / BOUNDARY LAYER INTERACTION (충격파 경계층 상호작용에서 난류모델 및 난류점성의 효과)

  • Jeon, Sang Eon;Park, Soo Hyung;Byun, Yung Hwan
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.56-65
    • /
    • 2013
  • Two compression ramp problems and an impinging shock problem are computed to investigate influence of turbulence models and eddy viscosity on the shock-wave / boundary layer interaction. A Navier-Stokes boundary layer generation code was applied to the generation of inflow boundary conditions. Computational results are validated well with the experimental data and effects of turbulence models are investigated. It is shown that the behavior of turbulence (eddy) viscosity directly affects both the extent of the separation and shock-wave positions over the separation.

Unsteady laminar boundary layer over a heated circular cylinder started impulsively from rest (갑자기 출발하는 가열된 원통 주위의 비정상 충류경계층 유동에 관한 수치적 연구)

  • 김재수;장근식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.262-270
    • /
    • 1987
  • A numerical method is presented which can solve the unsteady momentum and thermal boundary layers, coupled through the agency of buoyancy force, over a heated circular cylinder impulsively started from rest. By linearizing the nonlinear finite difference equations without sacrificing accuracy, numerical solutions are obtained at each time step without iteration. To get rid of the requirement of excessive number of grid points in the region of reversed flow, special form of transformed variables are used, by which the computational boundary layer thickness is maintained almost constant. These numerical properties enable the method to easily handle the region of reversed flow and how the singularity develops in the interior of the boundary layer. In order to investigated the thermal effects on the skin friction, heat flux, displacement thickness and on the separation, we have successfully solved three different cases of the buoyancy parameter .alpha.(Gr/Re$^{2}$).

EDISON_CFD를 이용한 이중압축램프의 각도별 유동현상 비교

  • Lee, Won-Hong;Lee, Ji-Hun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.74-77
    • /
    • 2016
  • 본 연구에서는 Scream Jet Intake에 발생하는 충격파 경계층에서 속도를 Supersonic에서 Subsonic으로 줄였을 때의 상호작용을 EDISON_CFD로 해석하기로 한다. 이상적인 공기 유동에서 충격파 경계층의 각도를 $15^{\circ}{\sim}20^{\circ}$, $25^{\circ}{\sim}30^{\circ}$, $15^{\circ}{\sim}40^{\circ}$, $25^{\circ}{\sim}50^{\circ}$와 같이 두 개($5^{\circ}$, $25^{\circ}$)의 각도 차이를 두어 이중압축램프에서의 유동현상을 EDISON_CFD로 수행하고 분석하였다.

  • PDF

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

A CFD Prediction of a Micro Critical Nozzle (마이크로 임계노즐 유동의 CFD 예측)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $\kappa$-$\varepsilon$turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube (충격파관에서 발생하는 반사 충격파와 경계층의 간섭에 대한 연구)

  • Kim, Dong Wook;Kim, Tae Ho;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.481-487
    • /
    • 2017
  • The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

An Experimental Study of Compressor Section Profile in Transonic Flow (천음속 유동하의 압축기 익형에 대한 실험적 연구)

  • 류영진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2001
  • In the continuing quest for increased turbomachinery efficiency, the part played by blade profile shape remains crucial. The application of a heated thin metallic film with CTA(constant temperature anemometer) to the measurements of the laminar and turbulent boundary layer behavior(shock-boundary layer-interaction) in a transonic wind tunnel. Results of measurements with hot-film sensors on transonic compressor blades are extremely difficult to interpret because of ambiguous probe signals due to the complexity of the local flow pattern. In order to get the explicit information and give the designer to interpret characteristic signals from hot-film probes, a method was developed by comparing the results with other measuring technic results.

  • PDF

On the Sediment Transport Characteristics of the Bottom Turbulent Boundary Layer (저면난류경계층(底面亂流境界層)의 저질이동특성(底質移動特性))

  • Kim, Nam Hyeong;Kiyoshi, Takikawa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.267-277
    • /
    • 1993
  • A finite element method(FEM) is presented and applied to the two-dimensional bottom turbulent boundary layer. The time-dependent incompressible motion of a viscous fluid is formulated by using the well-known Navier-Stokes equations and vorticity equation in terms of the velocity and pressure fields. The general numerical formulation is based on Galerkin method and solved by introducing the mixing length theory of Prandtl for eddy kinematic viscosity of a turbulent flow field. Numerical computations of the transport of sediment on an arbitrary sea-bed due to wave motion in the turbulent boundary layer are carried out. The results obtained by the FEM made clear the difference in characteristic features between the boundary layer due to oscillatory flow and the boundary layer due to wave motion.

  • PDF

Study on Concept Design of Supersonic Inlet and Flow Control of Bleeding under Operating Condition (초음속 흡입구 개념 설계와 운영조건 내의 블리딩(bleeding) 유동제어 연구)

  • Choi, Jaehwan;Cheon, Somin;Choe, Yohan;Hong, Wooram;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1025-1031
    • /
    • 2012
  • The present paper deals with concept design of supersonic inlet based on compressible flow theory and flow control of bleeding in order to guarantee stability of supersonic inlet of ramjet engine in broad range of operating conditions. Shock instability, shock wave-boundary layer interaction and flow separation should be properly controlled to improve performance of the supersonic inlet. Considering shock strength, boundary layer and flow separation, the supersonic inlet is modified from the basic model which is designed under inviscid theory. Consequently, shock is stabilized, and required mass flow rate is obtained. Furthermore, bleeding is applied to the supersonic inlet to maintain performance in off-design conditions. Mass flow condition is adopted for modeling of bleeding effect, and performance of the supersonic inlet is evaluated by changing bleeding locations and numbers.

Stability Analysis of Waste Landfill Using Multi-interface Element Numerical Method (복합 경계면요소 수치해석에 의한 매립지 안정성 해석)

  • 장연수;김홍석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.29-38
    • /
    • 2004
  • A finite element nonlinear stress-deformation model with multi-interface element is applied to the stability analysis of waste landfill slope. Strength parameters of waste and geosynthetic materials are obtained from the triaxial test of waste and the direct shear test of geosynthetics, respectively. The landfill models used for the numerical models are fit to regulations of the Korean waste management law. The results of the strength tests showed linear behavior for the waste and nonlinear behavior for the eosynthectic materials. The stability analysis with multi-interface element for the geosynthetic materials in the liner system showed large shear stress and slippage at the boundary of the foundation and the slope of the waste fill. This analysis verified the necessity of multi-interface analysis for waste landfills with composite liners.