• Title/Summary/Keyword: 압축목재

Search Result 106, Processing Time 0.025 seconds

Flame Resistance and Durability of Compressed Structural Wood through Microwave Heat Drying Method (마이크로파 가열건조법에 의한 압축 구조용 목재의 방염 및 내구성)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.162-170
    • /
    • 2011
  • As the result of implementing a treated material test and durability test after quickly drying S.P.F. species, a type of softwood structural material, within a short period time, soaking it in liquid phosphate flame proof agent for an hour, microwave heating it, and compressing it from 3.8cm to 1cm, when setting the appropriate heating time of microwave heating at 7 minutes at 5kW, it is observed that it satisfies the target water content (4~5%). It is shown that in a water content measurement of the wood that is compressed after being softened by soaking in the flame proof agent, drying and heating at 3kW for 9 minutes, all specimens satisfied 12~14%, the appropriate water content for exterior wood. Also, it is shown that in terms of the flame performance obtained through a flame resistance treatment of the compressed wood and a treated material test, the specimen soaked in flame proof agent for 30 minutes was the most excellent, and that the performance test result of the compressed wood in all areas, such as nail withdrawal resistance, compression, bending strength, and shearing strength, were all improved in their mechanical features to twice to three times better performances.

A study of feasibility of using compressed wood for LNG cargo containment system (압축목재를 사용한 LNG 화물창 단열시스템의 적합성 평가에 관한 연구)

  • Kim, Jong-Hwan;Ryu, Dong-Man;Park, Seong-Bo;Noh, Byeong-Jae;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.307-313
    • /
    • 2016
  • When liquefied natural gas (LNG) is stored in a tank, it is necessary to maintain low temperature. It is very important that insulation techniques are applied to the LNG cargo because of this extreme environment. Hence, laminated wood, especially plywood, is widely used as the structural member and insulation material in LNG cargo containment systems (CCS). However, fracture of plywood has been reported recently, owing to sloshing effect. Therefore, it is necessary to increase the strength of the structural member for solving the problem. In this study, compressed wood, which is used as a support in LNG independent type B tanks, was considered as a substitute for plywood. Compression and bending tests were performed on compressed wood under ambient and cryogenic temperatures to estimate the mechanical behaviors and fracture characteristics. In addition, the direction normal to the laminates surface was considered as an experimental variable. Finally, the feasibility of using compressed wood for an LNG CCS was evaluated from the test results.

The Mechanical Properties of Heat-Compressed Radiata Pine (Pinus radiata D.Don) by Compression Set (열압밀화 라디에타 소나무재의 압축세트량에 따른 역학적 특성)

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • The mechanical properties of heat-compressed Radiata pine (Pinus radiata D.Don) by compression set were investigated. Heat-compression condition was temperature at $180^{\circ}C$ and press time for 60 minutes. The mechanical properties of heat-compressed wood increased with increasing compression set. Increase of the specific gravity has led to increase in mechanical properties. The maximum compression set of Radiata pine was investigated approximately 65%. It was almost same result with porosity 68% of Radiata pine in specific gravity 0.48.

A Study on the Physcial and Mechanical Properties of Hot - Compressed Wood (열압처리(熱壓處理) 목재(木材)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究))

  • Park, Young-Kyu;Chung, Dae-Kyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.45-58
    • /
    • 1987
  • This study was carried out to improve the physical and mechanical properties of Pupulus alba $\times$ glandulosa treated by the heat and compression. The results obtained were as follows. 1. The specific gravity of the wood was conspicuously increased by the lincreasing of pressing level. 2. The shrinkage of the wood was increased. by the increasing of pressing level. The radial shrinkage was 6.41-8.81%, the tangential shrinkage was 8.98-19.81 %, and the longitudinal shrinkage was 1.46-1.91 %. Comparing to the untreated stock, the rate of increase was 48.7-104.4% in radial direction. 1.7-124.4% in tangential direction and 60.4-109.9% in longitudinal direction, respectively. 3. The rate absorption of 30% compressed stock was Similar to that of untreated stock. but the rate of absorption of 40 % or more compressed stock was increased highly. 4. The thickness swelling of the wood was not changed in radial direction at pressing level, but was conspicuously increased in tangential direction under the pressing level of 40% and 50%. 5. The heat and compression treatment affected on the mechanical properties of the wood. The longitudinal compressive strength was increased under the pressing level of up to 40%, but was decreased under the pressing level of 50%. The bending strength was not changed under the compression percentage of up to 30%, but was decreased under the pressing level of 30% or more. And, the absorbed energy in impact bending was increased to 128% under the pressing level of up to 30%, but was decreased under the pressing level of 30% or more. Conclusionly, the mechanical properties of the wood was improved by the heat and compression treatment, but the strength of the wood was decreased under the pressing level of a certain level or more(in this study, pressing level of 30% or more). This was because of the wood deterioration due to the deformation(shrinkage, crack, failure) of wood tissues induced by the heat and compression treatment, the heat analysis of wood components induced by the heating, and the drop of the degree of polymerization.

  • PDF

Effects of Moisture Content and Slope of Grain on Ultrasonic Transmission Speed of Wood (함수율과 섬유경사각이 목재의 압축강도 및 초음파 전달속도에 미치는 영향)

  • Jang, Sang-Slk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.10-18
    • /
    • 2000
  • Nondestructive testing(NDT) by using ultrasonic sound is widely applied to wood for grading, moisture and defect detecting, estimating degree of decay, etc. Before practicing such application, basic relationships between ultrasonic transmission and wood properties shall be studied first. In this study, ultrasonic NDT was applied to larch and red pine to investigate the effects of moisture content and slope of grain on ultrasonic transmission speed. Specimens for testing about moisture content were prepared to have moisture content of green state, 30%, 20%, 10% and oven-dry state. Specimens for testing about slope of grain were prepared to have grain angle of 0, 15, 30, 45, 60, 75 and 90 degree in the tangential direction. Ultrasonic transmission speed was inversely proportional to moisture content in low range of moisture content under around 30% that was considered to be close to fiber saturation point. In high moisture content range above 30%, the ultrasonic transmission speed was almost constant. The same trend was observed in the relationships between compressive strength and moisture content. Slope of grain also had inversely proportional relationship with ultrasonic transmission speed and compressive strength. The relationship between compressive strength and ultrasonic transmission speed could be expressed by a linear equation.

  • PDF

Evaluation of Properties of Mortar and Concrete using Wood Chip Cogeneration Plant Flooring as Fine Aggregate (목재칩 열병합 발전소 바닥재를 잔골재로 활용한 모르타르 및 콘크리트 특성 평가)

  • Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.327-334
    • /
    • 2022
  • In this study, in order to evaluate the characteristics of mortar and concrete using wood chip cogeneration plant flooring as fine aggregate, mortar characteristics according to wood chip aggregate replacement rate and water-cement ratio as a substitute for crushed sand, and concrete characteristics according to wood chip aggregate replacement rate were compared and evaluated. The cement mortar flow according to the wood chip aggregate replacement rate showed a tendency to increase as the wood chip aggregate replacement rate increased, and the compressive strength and flexural strength increased as the wood chip aggregate replacement rate increased. The slump and air content of concrete increased as the aggregate replacement rate increased, and the compressive strength and tensile splitting strength of concrete tended to increase as the wood chip aggregate replacement rate increased. Accordingly, the possibility of using the flooring by the cogeneration plant as a fine aggregate for concrete was confirmed.

Anatomical Comparison between Compression Wood and Opposite Wood in a Branch of Ginkgo biloba L. (은행나무 지재(枝材)의 압축이상재(壓縮異常材)와 대응재(對應材)에 관(關)한 해부학적(解剖學的) 특성(特性) 비교(比較))

  • Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.77-85
    • /
    • 1991
  • 은행나무 지재(枝材)에 발달(發達)하여 있는 압축이상재(壓縮異常材)와 대응재(對應材)의 해부학적(解剖學的) 특성(特性) 차이(差異)를 조직(組織) 및 그 구성요소(構成要素)의 크기 면에서 서로 검토(檢討) 비교(比較)하였다. 조직적(組織的)인 특성(特性)으로는 압축이상재(壓縮異常材)가 연륜폭(年輪幅), 횡단면상(橫斷面上) 가도관(假導官) 형상(形狀) 및 방사조직(放射組織) 비례상태(比例狀態), 세포간극(細胞間隙), 가도관(假導官) 선단(先端)의 굴곡(屈曲), 나선열(螺旋裂) 및 접선단면상(接線斷面上)의 방사조직(放射組織) 형상(形狀) 면에서 대응재(對應材)와 차이(差異)를 나타냈으며 구성요소(構成要素)의 크기에 있어서는 가도관(假導官)의 벽후(壁厚) 및 접선직경(接線直徑), 단열(單列) 방사조직(放射組織)의 높이, 이열방사조직(二列放射組織)의 수(數) 및 방사조직(放射組織) 밀도(密度) 면에서 압축이상재(壓縮異常材)가 대응재(對應材)와 차이(差異)를 나타내는 것으로 여겨졌다.

  • PDF

Changes in the Amount of PEG Free-Flowing Back from PEG-Treated Waterlogged Archaeological Wood and the Compressive Strength According to Relative Humidity Conditions (습도조건에 따른 PEG 처리 수침고목재의 PEG 용출량 및 압축강도 변화)

  • Jo, Ah Hyeon;Lee, Kwang-Hee;Choi, Tae-Ho;Go, In Hee;Seo, Jeong-Wook
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.225-235
    • /
    • 2020
  • The present study aimed to monitor changes in the amount of PEG free-flowing back from PEG-treated woods and compressive strength changes with change in relative humidity from 90% to 30%. The change in the relative humidity was done 3 times. For the current study, water-logged wood (Prinus group) was used and the wooden blocks cut out of it were subjected to 3 different impregnation methods combined with different drying conditions as follows: 1) impregnating with 80% PEG#4000 followed by drying in nature (hereafter PEG80), 2) impregnating with 40% PEG#4000 and then drying in vacuum freeze drying equipment (hereafter PEG40), and 3) impregnating with 40% PEG#4000 in t-butanol, followed by drying in the vacuum freeze drying equipment (hereafter TB40). It was verified that most of the PEG was free-flowing back from the PEG-treated woods; however, a small amount of left PEG was observed on the lumen surface. The amount of PEG free-flowing back from the PEG-treated woods increased whenever the relative humidity changes from 90% to 30%. The compressive strengths of PEG80 and TB40 were increased whenever the relative humidity changed from 90% to 30%, whereas PEG40 decreased. The current study showed how to control the relative humidity to effectively manage PEG-treated waterlogged woods.

Compressive Strength of Waterlogged Archaeological Wood after PEG Treatment with Concentration and Solvent (PEG 처리 수침고목재의 농도 및 용매에 따른 압축강도 변화)

  • Kim, Soo-Chul
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.95-99
    • /
    • 2012
  • The compressive strength of PEG along processing concentration and solvent is willing to be measured and proper processing condition for exhibition and storage is also willing to be measured by comparing with dimensional stability. In the advanced research of setting PEG-preprocessing concentration & solvent for freeze drying of waterlogged archaeological wood of high water content, vacuum freeze drying showed the highest dimension stability after 40% PEG-preprocessing of aqueous solution. In this study, the compressive strength increased in proportion of processing concentration and water showed the relatively-higher compressive strength than t-butanol regarding solvent. Especially, it showed that there is no big strength difference between PEG 40% and PEG 50% in aqueous solution by 6.6%(16kgf/$cm^2$). According to the above results, it was recognized that it is most effective to implement freeze drying after 40% PEG-preprocessing when want to dimensional stability and compressive strength simultaneously.

Evaluation of Strength Performance of the Fumigation Treated Wood Affected by the Oak Wilt Disease (참나무시들음병 훈증목의 강도 성능 평가)

  • SONG, Dabin;KIM, Keonho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.820-831
    • /
    • 2020
  • Fumigation treatment is mainly used on dead trees affected by the oak wilt disease to prevent the spread of damage. To verify the possibility of intensive use of the damaged Mongolian Oak wood treated by the fumigation treatment, we performed the compression and bending performance evaluation of the fumigation treated wood. The fumigation was done with Nemasect (Metam-sodium) for about 9 months. The dry longitudinal compressive strength of the fumigation treated oak wilt-diseased wood at the ambient temperature and humidity, and the compressive modulus of elasticity were measured to be 58.87MPa, and 5.66GPa, which were similar to the non-treated wood. The strength performance of mature wood of fumigation treated wood was 16% higher than that of juvenile wood. The compression fracture of the non-treated oak wood showed various shapes, however, most of the fumigation treated wood showed shear-type fracture shape. The bending strength of the fumigate treated wood was measured to be 157.43MPa, which was 8% higher than that of the non-treated wood, and the bending modulus of elasticity was measured to be 16.38GPa, which was 16% lower than that of the non-treated wood. However, it was confirmed that the coefficient of variation for the bending strength performance value of the fumigation treated wood was lower than that of the non-treated wood.