• Title/Summary/Keyword: 압축공기냉각

Search Result 71, Processing Time 0.03 seconds

Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect (초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구)

  • Seo, Junhyuk;Kwon, Kilsung;Choi, Ju Chan;Baek, Jehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.153-159
    • /
    • 2015
  • In this study, a 2-W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and analytical and experimental investigations of its potential under actual combustion conditions were performed. An ultra-micro-gas turbine contains a turbo-charger, combustor, and generator. A compressor, turbine blade, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control machined air bearing, and a permanent magnet was attached to the end of the shaft for generation. An analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor heat, which was verified in an actual experiment.

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

Evaluation of the Economics of High Speed Machining Considering Environmental Effects (환경영향을 고려한 고속절삭가공의 경제성 평가)

  • Chang, Yoonsang;Kim, Sun-Tae
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.182-189
    • /
    • 2006
  • In this study, high speed machining is evaluated with regard to economical and environmental effects. Considering environmental loads, machining costs are analyzed with the mathematical models of machining economics and cutting fluid loss. Data from the tool life experiments of high speed milling and turning are used for the analysis. The analysis of high speed milling shows that the machining cost decreases as increasing the cutting speed. In turning process, the cooling method using cutting fluid shows the minimum machining cost. Considering both machining and environmental costs, cooling method using cold air is superior to other methods.

  • PDF

Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method (냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가)

  • Hwang I.O.;Kwon D.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.

Heat Transfer Analysis of a Heat Exchanger for an Air-Compressor of a Railway Vehicle Based on Cooling Air Flow Measurement (냉각공기 유속 측정에 기반한 철도차량용 공기압축기 열교환기의 열전달 특성 분석)

  • Ahn, Joon;Kim, Moo Sun;Jang, Seongil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.447-454
    • /
    • 2017
  • In this study, local velocity distribution of cooling air in a heat exchanger used in an air compressor for a railway car was measured and heat transfer characteristics of the heat exchanger were analyzed. First, heat transfer coefficient and fin performance of the cooling air side were predicted and was checked if the fin of the heat exchanger was effectively used. Distribution of air flow rate at high temperature side was predicted through pipe network analysis and heat resistance at high temperature and low temperature side were predicted and compared. Spatial distribution of temperature in the interior and surface of the square channel constituting high-temperature side was predicted and appropriateness of the size of the heat exchanger was examined. As a result of the analysis, the present size of the heat exchanger could be reduced and it could be effective to promote heat transfer inside the heat exchanger rather than outside to improve performance of the heat exchanger.

Performance Development of the Silencer for a Vortex Tube (볼텍스 튜브용 소음기 성능 개발)

  • Jo, Young-Ho;Kim, Chang-Su;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.659-661
    • /
    • 2012
  • 볼텍스 튜브란 압축가스의 흐름을 뜨거운 공기와 차가운 공기로 전환 시켜주는 냉각 장치이다. 본 논문에서는 볼텍스 튜브에서 발생되는 소음의 특성을 파악하고자 하였다. 1/2in 소음기와 3/8in 소음기는 소음기를 장착하지 않은 경우 보다 평균8~10dB 감소되었고, 1/4in 소음기는 약15dB정도 감소하였다. 출구를 가공한 1/2in 소음기의 소음은 소음기를 장착하지 않은 경우와 비슷하고 3/8in 소음기는 소음 감소폭이 적었다. 1/4in 소음기기의 소음은 압력이 커질수록 소음이 급격히 커지는 것을 알 수 있다. 기존의 소음기와 출구를 가공한 소음기를 비교 하였을 경우 1/2in 소음기에서는 평균 9dB정도 기존 소음기의 성능이 좋고, 3/8in 소음기에서는 평균 7.5dB정도 성능이 좋은 것을 알 수 있다. 1/4in 소음기에서는 평균 9.5dB정도 기존 소음기가 소음 감소폭이 크며 압력에 따른 소음의 감소폭이 차이가 큰 것을 알 수 있다.

  • PDF

Experimental & Performance Analysis of an Inert Gas Generator for Fire Suppressing (화재진압용 비활성가스제너레이터 성능해석 및 시험)

  • 김수용;코발레프스키
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.86-89
    • /
    • 2001
  • Present study deals with performance analysis and experimental investigation of an inert gas generator (IGG) which can be used as effective means to suppress fire. The IGG uses a turbo-jet engine to generate inert gas for fire extinguishing. It is generally known that a less degree of oxygen content in the product of combustion will increase the effectiveness of fire extinguishing. An inert gas generator system with water injection has advantages of suffocating and cooling effects that are very Important factors for fire extinguishing. Some aspects of influencing parameters, such as, air excess coefficient, compressor pressure ratio, air temperature before combustion chamber, gas temperature after combustion chamber, mass flow rate of water injection etc. on the performance of IGG system are investigated.

  • PDF

A Study on the Closed-Loop Air Drying Technology for Drying Wastewater Sludge (하수슬러지 건조를 위한 폐루프 공기건조 기술에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.821-827
    • /
    • 2012
  • Air drying is a technology to dry sludge at the ejector and multi cyclone as intaking and blowing air from outside. So, this technology has a weak point that operating fluctuation is large according to an outside conditions as well as energy consumption is also large due to open loop structure. This is to develop the closed-loop air drying system to be built the dehumidifier consisted of condenser, cooler and compressor at rear side of separator of air dryer, as a way to solve some problem. Air is circulation by the method of blowing-drying-dehumidifying-blowing within this system. It is analyzed that an air circulated at closed-loop air drying equipment contains the energy of 50% more compared with open-loop air drying and is operated regularly because of quality maintenance of air to dry sludge. And also it is analyzed that the cost of drying sludge of 1 ton by closed-loop air drying equipment is lower about 35% than conventional equipment. Therefore, this is evaluated by useful drying technology to face an unexpected climatic conditions due to regular operation as well as low energy consumption.

Performance Evaluation of Environmentally Conscious Machining using Super Low Temperature-Cold Air System (초저온 냉풍시스템을 이용한 환경친화적 가공의 성능평가)

  • Bae, J.C.;Lee, S.S.;Kang, M.C.;Kim, J.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • In industrially advanced countries, environmentally conscious machining was eagerly studied because of ecological and economical reasons. As the environmental regulations become stricter, new machining technologies which take environmental aspects into consideration are being developed Industry and research institutions established applications for dry, semi-dry, oil-mist and compressed cold air machining. This paper investigates the performance of new compressed cold air system for environmentally conscious machining and evaluates machinability of dry and new compressed cold air machining. A series of tests are carried out using measuring eqipments under dry and compressed cold air machining.

  • PDF