• Title/Summary/Keyword: 압축강도 180MPa

Search Result 30, Processing Time 0.025 seconds

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 구성인자가 압축강도에 미치는 영향)

  • Park Jung-Jun;Koh Kyung-Taek;Kang Su-Tae;Kim Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.35-41
    • /
    • 2005
  • Recently, various fiber reinforced cementitious composites are used in order to solve problems of concrete as the brittleness breaking. Especially, in U.S.A., Europe, and Japan, ultra-high strength steel fiber reinforced cementitious composites(ultra-high strength SFRCC) with compressive strength in excess of 100 MPa were developed. However few studies have been investigated on the high-strength SFRCC in Korea. Therefore, in this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-binder ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.20, we could make ultra-high strength SFRCC with compressive strength of 180MPa through using of silica fume, quartz sand with below 0.5mm filling powder and steel fiber.

Evaluation of Shear Strength of Perfobond Rib in Ultra High Performance Concrete (초고성능 콘크리트에 대한 Perfobond Rib 전단연결재 거동 평가)

  • Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5015-5020
    • /
    • 2015
  • Push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action.

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

A Study for Application of 180 MPa Ultra High Performance Concrete to Compressive Members (180MPa 초고성능 콘크리트의 압축 부재에의 적용성에 대한 연구)

  • Min, Kyung-Hwan;Choi, Hong-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4930-4935
    • /
    • 2015
  • In the actual research fields, the studies for applications of 180 MPa ultra high performance concrete (UHFRCC) to compressive members are limited due to its very high compressive strength. In this study, in order to find its practical use, UHPC was producted by using twin-shaft mixer batch plant. Also, to get basic research data for the design specification of UHPC compressive members, a series of draft experiments, including short columns with square and circular sections, were performed and its failure modes and behaviors were assessed.

The Study on the Fire Resistance Performance of the CFT (Concrete filled Tube) Column According to the Concrete Compressive Strength and Load Ratio (콘크리트 압축강도 및 하중비에 따른 CFT기둥의 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.44-51
    • /
    • 2010
  • This study, to develop the technology of the fire resistance design of CFT structure based on fire resistance performance design, was suppose to use as basic data for performance design through a measure of temperature and deformation of the CFT specimen as parameter is the concrete compressive strength and load ratio. In accordance with KS F 2257-1 and 7, 24 MPa and 40 MPa and the load ratio of 0.9, 0.6 and 0.2 were imposed on a square column and as a result of evaluating in accordance with the fire resistance criteria, in case of 24 MPa, the fire resistance performance was improved by 73 minutes when the load ratio was reduced by 0.3. And when it comes to 40 MPa, the fire resistance was 31 minutes and 180 minutes when a load ratio was 0.6 and 0.2, respectively. As a result of evaluating fire resistant performance depending on variation of internal concrete strength, it proved that the higher the strength the lower the fire resistance.

Experimental Study on Fire Resistance Performance of CFT (Concrete filled Tube) Column according to Cross Section of Steel, Concrete Compressive Strengths and Load Ratios (강관의 크기, 축력비 및 콘크리트 압축강도 변화에 따른 CFT 기둥부재의 내화성능에 관한 실험적 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun;Min, Byung-Yeol;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.104-111
    • /
    • 2010
  • The strength of steel in a concrete filled steel tube (CFT) is reduced in a fire, but the concrete filled structurally ensures the fire resistance due to its high thermal capacity. This research analyzed the fire resistance performance due to the variances of concrete strength filled inside of steel tube and the load ratios, which can influence on the fire resistance of CFT. As $280{\times}280{\times}6$ CFT columns with the concrete strengths of 24 MPa and 40 MPa and the axial load ratios of 0.9, 0.6, and 0.2 in accordance with KS F 2257-1 and 7 were heated with loading to examine the fire resistance performance, the fire resistance used to 24 MPa concrete showed 27, 113, and 180 minutes according to the axial load ratios, 0.9, 0.6, and 0.2 respectively. In case of 40 MPa concrete, the fire resistance were turned out to be 19 and 28 minutes for the axial load ratios, 0.9 and 0.6 respectively. The results of fire resistance with 40 MPa concrete showed the much lower fire resistance performance than those of 24 MPa concrete. In case of 40 MPa, the fire resistance performance was not increased significantly according to the axial load ratio than that of 24 MPa. The main reason why the higher concrete strength showed lower fire resistance than that of lower guessed the internal stress had the concrete strength weak.

Improvement on the Properties of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료를 사용한 순환골재 콘크리트의 품질 개선)

  • Moon, Dae-Joong;Kim, Wan-Jong;Kim, Hak-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The aggregate, which does not satisfy the standard of KS F 2573, was selected for this investigation. The 28day compressive strength of recycled aggregate concrete without pozzolan material was 21.7MPa, which was less than the strength of concrete made with crushed stone. However, the compressive strength at 28 days was improved by mixing early rapid hardening cement to the cement at the weight ratio of 2.5%. Furthermore, the compressive strength at 91 days and 180 days increased significantly by adding fly ash, slag powder, and diatom powder. The tensile strength of recycled aggregate concrete with pozzolan material also increased about 40% compared to the general concrete. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom powder. Relationship between compressive strength and creep coefficient was shown to the linear relation like as ${\sigma}_c=-30CF+404$.

  • PDF

The effect of material factors on the compressive strength of ultra-high strength Steel Fiber Reinforced Cementitious Composites (재료요인이 초고강도 강섬유 보강 시멘트 복합체의 압축강도에 미치는 영향)

  • Park Jung Jun;Go Gyung Taek;Kang Su Tae;Ryu Gum Sung;Kim Sung Wook;Lee Jang Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.288-291
    • /
    • 2004
  • In this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-cementitious ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.18, we could make ultra-high strength SFRCC with compressive strength 180MPa through using of silica fume, quartz sand with below 0.5mm, filling powder and steel fiber.

  • PDF

Properties of Cement Mortar as Particle Size and Hydrothermal Synthesis Temperature Using Scheelite Tailing (중석 광미를 사용한 시멘트 모르타르의 입도 및 수열합성온도별 물리적 특성)

  • Chu, Yong Sik;Seo, Seong Gwan;Choi, Sung Bum;Kim, Gyoung man;Hong, Seok Hwan
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.46-53
    • /
    • 2019
  • Cement mortar was hydrothermal-synthesized with particle size of tailings using scheelite tailings deposited without proper treatment, and its physical properties were investigated. The mixing ratios of water-cement and sand-cement were fixed at 75 % and 400 %, respectively, during preparing cemnt mortar, and the sand was replaced by the tailings at 0 ~ 50 %. The particle size of tailings was controlled at 9.3 ~ 53.0 ℃, and the hydrothermal temperature was kept at 60 ~ 180 ℃ for 6 hours after the temperature increased to pretermined temperature with 2 ℃ heating rate. The compressive strength increased with increasing hydrothermal temperature. The compressive strengths were 55.2 MPa and 54.5 MPa when the mortars were prepared with 30 % low arsenic and high arsenic tailings after 60 min grinding. The compresiive strenght was enhanced 300 % compared with reference sample.