• Title/Summary/Keyword: 압전진동모드

Search Result 150, Processing Time 0.027 seconds

Modeling and Vibration Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀스테이지의 모델링 및 진동제어)

  • Kim, J.I.;Hwang, Y.S.;Kim, Y.S.; Kim, I.S.; Kim, K.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • This paper suggests a precision positioning control technique of a precision positioning stage with coupling effects. The precision positioning stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic characteristics of the precision positioning stage is modeled and identified by the FEM analysis. The dynamic characteristics of the stage are also identified by the frequency domain modeling technique based on the experimental data. Reliability of two modeling methods is examined by comparing the numerically and experimentally produced responses of the stage. This paper proposes a sliding mode control technique with integrator to improve the tracking ability of the precision positioning stage to the complex input signal using. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

Thickness Measurements of the Base Concrete by the Impact-Resonance Test (탄성파 충격공지법에 의한 기초 콘크리트의 두께 측정)

  • 김영환;이세경;김호철
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.121-128
    • /
    • 1991
  • Thicknesses of the hase concrete blocks supportmg large machmes were estimated by analyzing the res- 0 ¬nance modes of mechanical Vibrations The vibration was produced by the mechanical impact with steel ball drop and detected by a wideband comcal piezoelectric transducei. The detected signals were analyzed by FFT and thicknesses of specimen were determined by the resonant frequency of vibratIon. For the layered concrete block, the estimated thickness is dependent on the acoustic reflective index at the boundary between layers. The estimated thickness up to 100em were in goo:l agreement with the real value. In additlOn. this technique could be applicable to the estimation of the bondmg status of the layered structures.

Suggestion of an experimental method for optimization of flange point of a bolt-clamped Langevin-type ultrasonic transducer (볼트 체결형 란주반 초음파 트랜스듀서의 프렌지 포인트 최적화를 위한 실험적 방법 제안)

  • Kim, Jungsoon;Kim, Haeun;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.270-277
    • /
    • 2021
  • In the power ultrasound fields, the flange position for fixing the transducer is an important factor influencing on electro-mechanical efficiency of the transducer. We suggested a practical method that can determine the installation position of the flange for different resonance modes of the bolt-clamped type Langevin ultrasonic transducer. A semicircular wedge-shaped jig was manufactured and moved along the lateral surface of the transducer. The vibration characteristics were examined after a constant pressure was applied to the semicircular wedge-shaped jig. By observing the change of the input admittance of the transducer depending on the position of the pressure application, the optimum position for the flange installation could be determined. The resonant modes of the transducer were calculated by a Mason's equivalent circuit, and the particle velocity distribution for each resonance mode was calculated by a transmission line model. Since the optimum positions determined from an experimental result show a good correspondence with the node positions of the vibration modes calculated by the transmission line model, the validity of the suggested method was verified.

Design and Fabrication of Piezoelectric MEMS Power Generator (압전 MEMS 발전기 설계 및 제작)

  • Nam, Woon-Woo;Park, Jong-Cheol;Park, Jae-Yeong;Jang, Young-Soo;Lee, Yoon-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1456-1457
    • /
    • 2008
  • 본 논문에서는 박막 PZT(Pb(Zr,Ti)O3)를 이용한 d33모드의 자가 발전 소자를 설계 및 제작 하였다. 자가 발전 소자는 진동 에너지를 압전 현상을 통해 전기 에너지로 변환하는 소자로서, 제안한 구조는 단일 외팔보가 아닌 20개 이상의 외팔보를 원형으로 집적한 구조를 갖기 때문에, 기존의 단일 외팔보 위주의 자가발전 소자보다 출력 전력이 우수하다. 자가 발전 소자의 성능 최적화를 위해 유한요소기법(FEM)을 통해 기계적 특성을 분석하였으며, 마이크로 머시닝 기법을 이용하여 초박형의 자가 발전 소자를 제작할 수 있었다. 제작된 자가발전 소자는 $1.2mm\times1.2mm\times0.5mm$ (높이)의 크기를 갖는다.

  • PDF

Voltage Gain Characteristics of Piezoelectric Transformer Operation in Second Thickness Extensional Vibration Mode (2차 두께방향 지동모드로 동작되는 압전트랜스포머의 Voltage Gain 특성)

  • 김성진;이수호;류주현;임인호;홍재일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.855-860
    • /
    • 1998
  • This paper presents a new structure for a piezoelectric transformer, operating in thickness extensional vibration mode. Modified $PbTiO_3$ family ceramics were used for the piezoelectric transformer, because it was a material with large anisotropy between elecromechanical coupling factors $K_t$ and $K_p$ . The size of piezoelectric transformer was 20mn long, 20mm wide and 3.1mm thick. The second harmonic resonant frequency of thickness extensional vibration mode was 0.72MHz at loading resistance 100[$\omega$], And Voltage gin of piezoelectric ceramics showed 0.53 at resonant frequency of sencond thickness extensional vibration mode.

  • PDF

Dynamic Characteristics Recovery of Delaminated Composite Structure (층간 분리가 있는 복합재 구조물의 동적특성 회복)

  • Sohn, Jung Woo;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • In this paper, feasibility of dynamic characteristics recovery of delaminated composite structure is numerically studied by using active control algorithm and piezoelectric actuator. Macro-fiber composite(MFC), which has great flexibility and high actuating force, is considered as an actuator in this work. After construction of finite element model for delaminated composite structure based on improved layerwise theory, modal characteristics are investigated and changes of natural frequencies and mode shapes, caused by delamination, are observed. Then, active control algorithm is realized and implemented to system model and control performances are numerically evaluated. Dynamic characteristics of delaminated composite structure are effectively recovered to those of healthy composite structure.

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

Dynamic Modeling and Pressure Control of Piezoactuator Based Valve Modulator Integrated with Flexible Flapper (유연 플래퍼와 연계한 압전 밸브 모듈레이터의 동적 모델링 및 압력 제어)

  • Jeon, Jun-Cheol;Maeng, Young-Jun;Sohn, Jung Woo;Choi, Seung-Bok;Lee, Soo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.976-982
    • /
    • 2010
  • This paper proposes a novel type of pressure control mechanism which can apply to vehicle ABS (anti-lock braking system) utilizing the piezoactuator based valve system associated with the pressure modulator. As a first step, a flapper-nozzle of a pneumatic valve system is devised by integrating the piezoacuator to the flexible beam structure. The dynamic modeling of the valve system is then undertaken and subsequently the governing equation of pressure control is derived considering the pressure modulator. A sliding mode controller is designed in order to achieve accurate pressure tracking control in the presence of actuator uncertainty as well as input pressure variation. It is shown through computer simulation that an accurate pressure tracking for sinusoidal motion whose magnitude is 40 bar is achieved by utilizing the proposed pressure control mechanism.

Simulating a Time Reversal Process for A0 Lamb Wave Mode on a Rectangular Plate Using a Virtual Sensor Array Model (가상 탐지자 배열 모델을 이용한 직사각형 판에서 A0 램파 모드 시간반전과정 모사)

  • Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.460-469
    • /
    • 2010
  • This paper presents the analysis of a time reversal process for $A_0$ Lamb wave mode($A_0$ mode) on a rectangular plate. The dispersion characteristic equation of the $A_0$ mode is approximated using the Timoshenko beam theory. A virtual sensor array model is developed to consider the effects of reflections occurring on the plate boundary on the time reversal process. The time reversal process is formulated in the frequency domain using the virtual sensor array model. The reconstructed signal is obtained in the time domain through an inverse fast Fourier transform. The validity of the proposed method is demonstrated through the comparison to the numerical simulation results computed by the finite element analysis.

Numerical Analysis of Deformation Mode of Flexible Plate-Type Piezoelectric Module for Evaluating Characteristics of Electrical-Energy Generation (판형 압전 진동자의 굽힘변형 모드에 따른 전압발생 특성에 관한 해석적 연구)

  • Park, Jeong-Hyun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.735-741
    • /
    • 2015
  • Piezoelectric materials are well-utilized for transforming mechanical vibrations into electrical energy that can be stored and used to power a diversity of devices. In this work, these materials have been studied to improve the efficiency of a piezoelectric system, whereby the shape and vibration mode of a piezoelectric module was changed. The basic shape of the piezoelectric module used in this work comprises a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm. The structural design of the piezoelectric module is optimized using a Taguchi method to increase the corresponding electrical-energy generation. The maximum terminal voltage was defined as a characteristic value to evaluate the optimal design parameters. Through this work, we propose an optimal structure with an eccentric and centric mass; furthermore, the voltage increase of approximately 26% was obtained by comparing a general plate-vibrating piezosystem with an optimal plate-vibrating piezosystem.