• Title/Summary/Keyword: 압밀지수

Search Result 103, Processing Time 0.02 seconds

Compressibility Characteristics of the Lime Treated Clay (생석회 혼합토의 압축특성에 관한 연구)

  • 민덕기;황광모;오미희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.23-29
    • /
    • 2003
  • In this paper, effects of the acidification of ground and the chemical additive materials-ferric oxide, calcium chloride and calcium sulphate on the compressibility characteristics of the marine clay treated with quick lime were investigated. The rapid inflection point method was carried out. Results showed that the compression index of the untreated marine clay increased as the pH of pore water decreased. Also, the preconsolidation pressure, the coefficient of consolidation and the coefficient of permeability of the untreated marine clay decreased with pH of pore water. In the case of the marine clay treated with the quick lime-calcium chloride, the compression index decreased and the coefficient of consolidation and the coefficient of permeability increased. Specially, the preconsolidation pressure of sample treated with the quick lime-ferric oxide was higher than that of another samples.

Soil Stress-Deformation Analysis by Elasto-Plastic Model and Elasto-Viscoplastic Model - Using Back Analysis Method - (탄소성모델과 탄점소성모델을 이용한 지반변형해석 - 역해석 기법의 적용 -)

  • Kwon, Ho Jin;Song, Young Woo;Lee, Won Taek;Byun, Kwang Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.199-208
    • /
    • 1993
  • Using several soil parameters which are obtained from the PI-experimental formulas and the back analysis method, the elastic analysis, the elasto-plastic analysis and the elasto-viscoplastic analysis for soil deformation are executed. Comparing the results with those of consolidation test, the indirect estimation method for soil parameters and the suitability of constitutive models are studied. The elastic analysis using back analysis result and the elasto-plastic analysis using the perconsolidation test. The elasto-viscoplastic analysis disagrees with the results of meability coefficient obtained from back analysis are the nearest to the results of the consolidation test. It is inferred that elasto-viscoplastic model is not adequate to the soil of which plasticity index is low.

  • PDF

Evaluation Methods of Compression Index and the Coefficient of Consolidation by Back Analysis of Settlement Data (현장계측치로부터 역산한 압축지수와 압밀계수의 평가 방법)

  • Lee, Dal Won;Lim, Seong Hun;Kim, Ji Moon
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains is performed to analyze the effect of parameters of the very soft clay at a test site. Compression index and the coefficient of horizontal consolidation obtained by back-analysis from the settlement data were compared with those obtained by means of laboratory tests. The Hyperbolic, Asaoka's and The Curve fitting methods are used to estimate final settlements and coefficients of consolidation. 1. Final settlement predicted with the Hyperbolic method was the largest, and the settlements predicted with the Asaoka's and the Curve fitting methods were nearly the same range, and it was concluded that smear effect has to be considered on design in the case that spacing of drains is small 2. The relationships of the measured consolidation ratio (Urn) and the designed consolidation ratio($U_t$) were showed as $U_m$ = (1.13~1.17)$U_t$, $U_m$ = (1.07~1.20)$U_t$, $U_m$ = (1.13~1.17)$U_t$ on the Hyperbolic, Asaoka's and the Curve fitting methods, respectively. The relations on the Asaoka's and the Curve fitting methods were nearly the same range. 3. The relationships of the field compression index($C_{cfield}$) and virgin compression index($V_{cclab}$) were showed as $C_{cfield}$ = (1.26~1.45)$V_{cclab}$, $C_{cfield}$ = (1.08~1.15) $V_{cclab}$, $C_{cfield}$ = (1.04~1.21)$V_{cclab}$, on the Hyperbolic, Asaoka's and the Curve fitting methods, respectively. 4. The ratio ($C_h/C_v$) of the coefficient of vertical consolidation and the coefficient of horizontal consolidation that is obtained by back-analysis from the settlement data was $C_h$=(0.7~0.9)$C_v$, $C_h$=(0.9~1.5)$C_v$, $C_h$=(2.4~3.0)$C_v$ on the Hyperbolic, Asaoka's and the Curve fitting methods, respectively. 5. It was concluded that the exact consolidation coefficient must be determined after the final settlement is predicted again when the consolidation is finished, because the field consolidation coefficient is decreased as the time allowed to be alone is increased.

  • PDF

A Study on Consolidation Settlement Calculation of Cutting Soft Clay as Fill Material (절취 연약점성토의 성토재 활용에 따른 압밀침하량 산정에 관한 연구)

  • Yonghee Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.5-12
    • /
    • 2024
  • In the case of creating a site in the reclaimed land (public waters), due to the nature of the coastal sedimentary ground, large-scale construction materials are required, It is necessary to utilize soft clay, which is inevitably generated during construction of the complex, as a fill material in terms of resource recycling and economic aspects (reducing the amount of embankment required). In this study, changes in the consolidation characteristics of cut-out disturbed soft clay due to the recycling of soft clay soil were identified, and a consolidation settlement design plan was proposed. Through the results of the consolidation test of the study site, the change in consolidation characteristics (compression index reduction, precede load uncountable) due to disturbance (cutting) was confirmed, the method of calculating (consolidation settlement) the filling clay layer as the composite target layer (consolidation target layer, loading load layer) was analyzed as a result consistent with the actual behavior.

Relationship Between Physical Properties and Compression Index for Marine Clay (해성점토의 물리적 특성과 압축지수의 상관성)

  • 김동후;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.371-378
    • /
    • 2003
  • The compression index of clay distributed in the west and south coast of the Korean Peninsula had been studied. Compression index was obtained from the conventional consolidation test, and was conducted accordingly to obtain the field virgin compression curve by means of Schmertmann's graphical correction. To examine a correlation closely between physical properties of soils($e_o$, LL, w) and compression index(Cc), linen. and non-linear regression analysis were employed based on the data collected from tests. The conclusions are as follows. The compression index obtained by means of Schmereann's graphical correction is about 1.16 times for the value of original oedometer test curve for U/D samples. Non-liner regression curve was preferable to establish a correlation equation rather than linear regression curve. All derived equations so far achieved have been summarized and given. However, linear equation is better for practical use so that part by part simplified linear equations were also suggested alternatively together with their own non-linear regression curve.

Permeability Characteristics of Sedimented Clayey Soils (점토퇴적지반의 투수특성 연구)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.72-77
    • /
    • 2005
  • The oedometer test and the constant rate of consolidtion test were performed using the sedimented clayey soil sample. The characteristics of permeability of the clayey soil such as anisotropy, permeability change index, relation with void ratio, and influencing factors, were investigated from the lab. test results. Analyzing the permeability characteristics, the representative permeability coefficient was proposed.

  • PDF

Consolidation Characteristics & Consolidation Period of Dredged Soil by Considering Change of Strain and Stratum Thickness (변형률과 층 두께의 변화를 고려한 준설점토의 압밀특성과 압밀기간)

  • Cheong Gyu-Hyang;Kim Young-Nam;Ju Jae-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.105-114
    • /
    • 2004
  • Consolidation characteristics have been investigated by using Rowe cell consolidation tester for dredged soil, which is more than two times as much as the liquid limit. To examine the effects of variation of water content on consolidation characteristic, tests were carried out varying the initial water content from $100\%\;to\;150\%.$ The results were compared with the consolidation characteristics of remolded clay. The test results showed that the hither the initial water content of dredged clay was, the more noticeable the non-linear behavior of e-log P curves occurred. The variation of the gradient was apparent to load stage 40kPa and became less apparent after load stage 80kPa on the e-log P curves. Ratio of compression index stayed within the range suggested by Mesri and variation of initial water content has hardly influenced the coefficient of consolidation. On the contrary, it was found that the magnitude of consolidation load affects the vertical coefficient of consolidation. The variation of stratum thickness during consolidation processing needs to be taken into consideration since hydraulic fill would go through a much larger scale strain than land soil when it is subject to a load. In this study, the consolidation period considering the variation of stratum thickness was analyzed and the results were compared with those of existing consolidation studies which did not consider the variation of stratum thickness. According to the results of the study, the consolidation period of the ground with a larger strain was calculated more close to observed value in case of Mikasa theory which takes the variation of stratum thickness into consideration.

Effects of Various Loading Periods on the Consolidation Characteristics of Remolded Clay - With Special Reference to Gwangyang Marine Clayey Soil - (하중재하기간이 재성형 점토의 압밀특성에 미치는 영향 - 광양항 해성점토를 중심으로 -)

  • Hong, Jae-Cheol;Kim, Jin-Young;Shim, Jae-Rok;Kang, Kwon-Soo;Kim, Ju-Hyun;Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.53-64
    • /
    • 2014
  • This study sets it's face to define effects of the various loading periods in normal consolidation area on clay's compression and long-term consolidation characteristics through a laboratory test using homogeneous remolded clay. Moreover, by carrying out a long-term consolidation test which diversifies initial consolidation applicable to effective overburden loading in the various loading period. This study intended to suggest the method predicting the final settlement on the basis of loading periods by comparing and analyzing compression curve's characteristics according to loading weight of each stage and increase in loading period when carrying out the standard consolidation test. From the test results, the study shows that as of the soft clay's compression characteristics on the basis of various loading periods, preconsolidation load has a tendency to be decreased slightly as the loading period is getting more and more longer at each step after initial consolidation load puts on the remolded clay which is caused by secondary consolidation's increase in the latter part of each phase. And those effects have an weaker influence on compression index in normal consolidation area at the same time as secondary consolidation brought out quasi-overconsolidation and stabilization of clay's structure, have an influence re-compression index is increased in overconsolidation area on the other hand.

Geotechnical Characteristics of Clays Reconsolidated at High Temperature (고온재압밀 점토의 역학적 거동특성에 관한 연구)

  • 이강일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • A series of laboratory tests, which can show how different curing conditions influence an aging effect on clay, were carried out for the clay samples collected in the area of Kwangyang Bay and Mokpo. Clay samples were remolded and reconsolidated under three different curing temperatures (20, 50, and 80 degree Celsius) and low different curing durations (1, 7, 14, and 40 days). To find out an aging effect and geotechnical characteristics between undisturbed samples and reconsolidated samples, laboratory tests, consisting of uniaxial compression tests, CU triaxial test, and consolidation tests, were preformed. Results showed that the compression index ratio is very useful factor to indicate the aging effect of natural clays. Also geotechnical characteristics of clays reconsolidated at high temperature were very similar to those of undisturbed clays. Finally, curing temperature and curing duration influenced an aging effect on clays. The best curing condition was 80 degree Celsius and 27 days.

Required Discharge Capacity for Horizontal Drains Installed with Vertical Drains (연직배수공법에서 수평배수층의 소요통수능)

  • 김현태;김상규;공길용
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.59-70
    • /
    • 2002
  • Horizontal drains are sometimes installed on the ground together with vertical drains in order to drain excess pore water. Taking into account the discharge capacity of horizontal drains, a new analytical method is developed in this paper, and then a new formula for the discharge capacity of horizontal drains is proposed. It is known from the analysis that the effect of the rate of surcharge loading is negligible in determining horizontal discharge capacity. This formula is described as the function of coefficient of consolidation, space of vertical drain, compression index, length of horizontal drains, and thickness of the compressible layer.