• Title/Summary/Keyword: 압력-시간 파형

Search Result 23, Processing Time 0.015 seconds

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Numerical Simulation of Free-Surface Flows around a Series 60($C_B=0.6$) model ship (자유표면을 동반하는 시리즈 60($C_B=0.6$) 선형 주위 유동장의 수치계산)

  • Myung-Soo Shin;Kuk-Jin Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.13-29
    • /
    • 1996
  • This paper presents calculated results of the free-surface flow around a Series 60($C_B=0.6$) model. Three-dimensional Navier-Sotkes equations are solved and Baldwin-Lomax algebraic turbulence model is adopted to simulate the high Reynolds-number flow. To reduce computational efforts, velocity components near the wall are extrapolated with a the solved by using the Implicit Approximate Factorization method[2]. The successive-over-relaxation method is used for solving pressure-Poisson equation when obtaining the pressure field projecting the divergence-free velocity field. To simulate the free-surface flows more precisely, the numerical scheme solving the equation for the kinematic boundary condition is very important. In this paper, there numerical schemes are employed and the results are compared with the available experimental data.

  • PDF

A Study on the Changes of Blood Pressure Measurement Factors Before and After Heart Treatment (심장 치료 전후의 혈압 측정 인자의 변화에 관한 연구)

  • Choi, Wonsuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.51-56
    • /
    • 2021
  • The brachial systolic blood pressure and pulse pressure are the predictors of cardiovascular disease in individuals over 50 years of age. As the stiffness increases, the reflex amplitude and pressure in the late systole increase, resulting in an increase in left ventricular load and myocardial oxygen demand. Therefore, it is necessary to study how stiffness affects blood pressure. In this study, the blood pressure pulse waves were measured before and after taking the drug, and the blood pressure pulse wave was measured before and after myocardial heart transplantation in patients with heart failure. The correlation between R, L, and C components of the Windkessel model was estimated by increasing blood pressure. As a result of modeling the parameters of the Windkessel model using the curve fitting method, the increase in blood pressure and decrease in systolic rise time were due to the increase in the L component in the RLC Windkessel model. Among the various mechanical characteristics of blood vessels, the most important parameter affecting high BP waveform is the inertance.