Artillery gun tube experiences very high pressure according to the blast of propellant charge. Therfore, it is essential to guarantee the structural safety of the gun tube. On the other hand, weight reduction of gun tube is also a crucial design factor since the agility of artillery vehicle directly leads to its survivability. In this line of thought, this work proposed an efficient design procedure which utilizes the convex combination of breech pressure and projectile base pressure time histories. Its efficiency is verified by comparing with other procedures. Other procedures utilize different computed max pressure rather than the convex combination design pressure. Additionally, a transient analysis is carried out considering the projectile movement and the corresponding pressure distribution through the newly developed ABAQUS user-subroutine. The analysis confirms the structural safety of the lightweight gun tube designed by the proposed method.
본 연구의 목적은 편측성 구순구개열 (UCLP) 환자에서 술전 비치조 정형장치 (presurgical nasoalveolar molding appliance, PNAM) 와 구순 봉합수술의 치조골 정형효과를 3차원 (3-D) 분석을 통하여 평가하는 것이다. 연구대상은 16명의 UCLP 환자 (평균 파열부거리: 10.46mm) 이며 PNAM 장치에 의한 치료와 rotation-advancement법에 의한 구순 봉합수술을 받았다 처음 내원시 (평균연령: $37.0{\pm}27.89$ 일), PNAM 치료를 받고 난 후이며 구순봉합수술 1달 전 (평균연령: $119.25{\pm}40.18$ 일), 구순봉합수술 2달 후 (평균연령: $190.81{\pm}42.78$ 일)에 상악의 인상을 채득하였다. 그 후 laser scanning machine (Orapix, Dimennex, Seoul, Korea) 과 3-D view software (3Dxer, Dimennex) 를 사용하여 3-D모형을 제작하였다. 선, 각도, 정중선변이, 거리, 면적 항목을 3-D 모형상에서 계측하고, 각 시기별의 차이를 비교하기 위하여 Wilcoxon signed rank test를 사용하여 분석하였다. PNAM치료 동안과 구순 봉합수술 후에도 치조골 후방부는 안정된 구조물이었다. PNAM치료에 의한 파열부 거리의 감소는 대분절 (greater segment) 의 내측 굴곡 (bending) 에 의하여 발생하였다. 대분절 (greater segment)의 전방 성장은 PNAM치료에 의하여 억제되었으나, 구순 봉합수술 후에 회복되었다. 구순 봉합수술 후에 대분절과 소분절 사이의 전방부 각도의 증가는 구순 반흔 (lip scar) 의 압력에 의한 치조골 정형 효과 때문으로 생각된다. 정중선변이는 PNAM치료에 의하여 개선되었다. PNAM치료 동안과 구순 봉합수술 후에 구개부 (palatal segment) 의 면적은 계속 증가하였다. 치조골 면적과 거리 항목의 증가는 후방부에서 크게 나타났다. 이러한 결과는 PNAM치료에 의한 치조골 정형효과는 주로 전방부에서 발생하며, 치조골의 성장은 구순 봉합수술 후에 후방부에서 주로 발생한다는 것을 의미한다.
핵연료 펠렛제조공정의 단순화를 위하여 분말을 플라즈마로 용융시킨 후 이를 펠렛몰더에 직접 침적시키는 방법으로 핵연료를 제조하고자 하였다. 침적물의 밀도에 미치는 영향을 관찰하기 위하여 쉬스가스 조성, 플라즈마 동력, 챔버내부압력 및 분말 공급량, 입자크기, 분사관 위치, 분사거리 및 쉬스가스조성 등을 변수로 하였다$^{1)}$ . 실험으로 얻어진 결과는 ANOVA(Analysis of Variance)의 통계적 방법으로 각각의 인자가 밀도에 미치는 영향의 크기뿐만 아니라, 두 가지 이상의 인자가 조합되어 나타나는 영향에 대해서도 분석하였다.
전 세계적인 LNG 수요 증가에 따라 LNG 운반선의 대형화 및 극한 환경의 항로 선택이 불가피해지고 있다. 이러한 상황에서 LNG의 슬로싱 현상에 따른 화물창의 구조적 안정성 여부가 큰 이슈거리로 떠오르고 있다. 슬로싱 현상에 의한 구조 안전성을 평가하는 가장 이상적인 방법은 유체 영역과 탱크의 복합적인 상호 작용을 완벽하게 구현하는 것이다. 하지만 과도한 계산 시간과 결과의 정확성이 확보되지 못한 상황에서 LNG 운반선 화물창의 안전성 평가에 적용하기에는 문제가 있다. 많은 연구 단체에서는 불규칙적인 슬로싱 압력 신호를 삼각파 등의 형태로 이상화하여 구조해석에 적용하고 있지만 이 또한 유체의 압축성 및 비선형성을 고려하는데 한계를 드러내고 있다. 본 연구에서는 슬로싱 하중을 받는 구조의 안전성을 평가함에 있어 쌍방향(2-way) FSI(Fluid-Structure Interaction)의 과도한 해석 시간 및 수렴의 어려움을 보안하고 유체의 비선형성을 고려할 수 있는 단 방향(1-way) FSI 기법을 이용하는 절차를 제안하고자 한다.
제주도 사라봉 부근의 산지등대, 비석거리에서 나타나는 하와이아이트에는 티탄이 풍부한 각섬석(캘수타이트)과 사장석이 반정으로 나타난다. 또한 휘석, 감람석 미반정을 포함하며, 인회석과 소량의 K장석 래스도 나타난다. 캘수타이트는 자형 또는 반자형으로 불투명광물 반응연을 가진 반정으로 주로 산출되며, 해안가 시료의 캘수타이트는 산화철 형태로 치환되어 각섬석 가상을 관찰할 수 있다. 아주 드문 형태로 휘석 결정 내에 캘수타이트가 반응연 관계로 나타나는 형태를 볼 수 있으며, 이를 통해 유체에 의한 2차적인 수화반응이 있었음이 추정된다. 압력-$Al^T$ 지질압력계 관계식에 적용하여 결정화작용 압력을 추정한 결과, 산지등대의 시료에서는 약 6.3 kb, 비석거리의 경우 약 4.9 kb의 값을 얻을 수 있었다. 이를 통해 산지등대의 각섬석은 비석거리에 형성된 각섬석보다 더 깊은 곳에서 유체의 유입이 있었으며, 자형 반정의 형태와 인회석 포유물의 존재로부터 호스트마그마로부터 결정화작용을 통해 성장되었을 것으로 추정된다.
빗각 증착이란 입사 증기가 기판에 수직하게 입사하는 일반적인 공정과는 다르게 증기가 기판의 수직선과 $0^{\circ}$이상의 각을 갖는 증착 방법을 의미한다. 본 연구는 공정 압력이 비교적 높은 스퍼터링 공정에서 빗각 증착을 실시하여 코팅층의 구조제어가 가능한지를 확인하였다. 본 연구에서는 조직의 치밀도 향상을 통한 특성 향상을 위해 TiN 박막을 제조함에 있어서 빗각 증착 기술을 응용하여 단층 및 다층 피막을 제조하고 그 특성을 비교하였다. 스퍼터 소스에 장착된 타겟의 크기는 6"이며, 99.5% Ti 타겟을 사용하였고, Ar 가스 분위기에서 기판으로 사용된 Si(100) 위에 코팅하였다. 기판과 타겟 간의 거리는 10 cm이며, 기판은 알코올과 아세톤으로 초음파 세척을 실시한 후 진공챔버에 장착하고 < $2.0{\times}10-5Torr$ 까지 진공배기를 실시하였다. 진공챔버가 기본 압력까지 배기되면 Ar 가스를 주입한 후 RF 파워에 약 300V의 전압을 인가하여 글로우 방전을 발생시키고 약 30분간 청정을 실시하였다. 기판의 청정이 끝난 후 다시 < $2.0{\times}10-5Torr$까지 진공배기를 한 후 Ar 가스를 주입하여 TiN 코팅을 실시하였다. 빗각 증착을 위한 기판의 회전각은 $70^{\circ}$, $80^{\circ}$와 $-70^{\circ}$, $-80^{\circ}$이며, TiN 박막의 총 두께는 약 $3.5{\sim}4{\mu}m$로 유지하였다. 스퍼터링을 이용한 TiN 박막의 빗각 증착 코팅을 실시하였으며, 공정조건에 따라 주상정이 자라는 모습과 기울어진 각도가 다른 구조를 갖는 박막이 제조되는 것을 확인할 수 있었다. 빗각증착을 실시하는 중에 기판 홀더에 약 -100 V의 전압을 인가하면 인가하지 않은 막에 비해 치밀한 박막이 성장한다는 사실을 확인하였다. 박막의 성능향상을 위하여 스퍼터 시스템에서 빗각 증착을 이용한 TiN 박막 형성을 실시하였다. SEM 단면 이미지에서 확인해본 결과 주상정이 자라는 형상이 공정 압력이 5 mTorr에서 2 mTorr로 낮아짐에 따라 상대적으로 치밀하면서 일정한 형태로 성장하는 것을 확인하였다. 본 연구를 통해 스퍼터링을 이용한 빗각 증착의 Structure Engineering 이 가능함을 확인하였으며 박막의 성능을 향상시키는 기술로서 응용 가능할 것으로 보인다.
본 논문은 경부고속선 터널에서 발생하는 미기압파 예측기법을 설명하였다. 미기압파 예측식에 필요한 계수를 도출하기 위하여 터널궤도유형에 따른 미기압파 변화를 알아보기 위하여 터널압력파 미기압파를 동시에 계측하였다. 열차속도, 터널궤도유형 그리고 출구로부터 거리에 따른 크기 변화를 분석하였다. 경부고속선 터널에서 발생하는 미기압파는 고속열차가 약 300kph로 진입할 때, 길이 4.0km의 자갈궤도터널에서는 약 7.5Pa 미기압파가 발생하며, 3.3km의 슬라브궤도터널에서는 약 14.3Pa의 미기압파가 발생한다. 그리고 터널출구에서 방사된 미기압파는 전파거리에 반비례하여 줄어들며, 100m 지점에서는 약 0.5~1.0Pa로 나타난다. 그리고 터널압력파 기울기를 이용하여 미기압파 예측식에 필요한 계수를 도출한 후, 예측식을 통해 미기압파 크기를 계산하였다. 계산된 미기압파 크기를 현장시험 결과값과 비교해 본 결과, 터널 미기압파 크기는 이론식을 이용하여 신속하게 예측할 수 있음을 확인하였다.
본 연구에서는 아크 소스를 이용하여 TiAlN을 코팅하였으며 공정 변수 중 질소 유량에 다른 TiAlN 박막의 물성 변화를 관찰하였다. TiAlN은 고경도 난삭재의 고능률 절삭 분야에 사용되어 공구의 수명을 향상하기 위한 표면처리 소재로 각광을 받고 있다. TiAlN 박막은 아크 소스에 장착된 TiAlN 타겟(Ti-50 at %Al)을 사용하여 스테인리스 강판 위에 코팅 하였으며 이 때 기판과 타겟 간의 거리는 약 30 cm이었다. 기판을 진공용기에 장착하고 ${\sim}10^{-6}$ torr까지 진공배기를 실시한 후 아르곤 가스를 진공용기 내로 공급하여 공정 압력인 $7{\times}10^{-4}$ torr로 제어한다. 공정 압력에서 아크 소스에 약 70 A의 전류를 인가하여 아크를 발생시키고 기판 홀더에 약 -400 V의 직류전압을 인가하여 약 5분간 청정을 실시하였다. 기판의 청정이 끝나면 기판에 인가된 전압을 차단하고 질소 가스를 진공용기에 공급하여 TiAlN을 코팅하였다. 질소 유량이 30 sccm일 경우 TiAlN 박막의 경도가 약 2510 Hv로 가장 높았으며, 질소의 유량이 40 sccm 이상으로 증가할 경우 TiAlN 박막의 경도는 1500 Hv로 주목할 만한 변화는 없었다. 질소 유량이 증가하면 TiAlN 박막의 색상은 회색에서 어두운 보라색으로 변화하였고 주사전자현미경 분석을 통해서 거대 입자(macro particle)가 감소하는 경향을 확인할 수 있었으며 이는 질소 유량이 증가할수록 TiAlN 박막의 표면조도 또한 증가하는 분석결과와 일치하였다. X-선 회절 분석을 통해 질소 유량이 30 sccm 이상에서 박막의 질화가 일어나고 2500 Hv 이상의 경도를 가지는 최적 조건임을 확인하였으며, 이는 절삭 공구 등과 같이 고경도 유지를 위한 코팅 분야에 적용이 가능할 것으로 판단된다. 본 연구에서 얻어진 결과를 바탕으로 질소 유량 외에 다른 공정 조건을 변화시켜 TiAlN 코팅을 실시한다면 다양한 색상 구현, 고경도, 내마모성 등 TiAlN 박막의 기능성을 향상할 수 있을 것으로 예상된다.
지구시스템 이해에 중요한 지구 내부 맨틀 물질의 거시적인 성질을 이해하기 위해서는 고압상태의 Mg-규산염 결정질 및 비정질 물질에 대한 원자구조와 그에 수반하는 전자구조에 대한 이해가 필요하다. 근래에 in-situ 고압 실험의 어려움을 피하여 고압환경에 존재하는 지구물질의 원자구조와 그 전자구조를 규명하기 위한 방법론으로서 밀도 범함수 이론에 기반을 둔 양자화학계산이 많이 이용되고 있다. 본 연구에서는 FP-LAPW (full-potential linearized augmented plane wave) 방법론을 이용하는 WIEN2k 프로그램을 통하여 25 GPa와 120 GPa의 $MgSiO_3$ 페로브스카이트(Pv)의 전자 오비탈의 PDOS (partial density of states)와 O원자 K-전자껍질 ELNES (energy-loss near-edge structure) 스펙트럼을 계산하였다. 두 압력 조건의 $MgSiO_3$ Pv에 대하여 계산된 전자 오비탈의 PDOS와 O원자 K-전자껍질 ELNES 스펙트럼은 뚜렷한 차이를 보이고 있었다. 이와 같은 결과는 $MgSiO_3$ Pv에서 압력 증가에 의한 Si 원자 배위수의 변화가 나타나지 않더라도 Si-O 결합거리, O-O거리, Mg-O거리와 같은 O원자 주변 국소 원자구조의 변화가 O원자 주변 전자구조에 뚜렷한 영향을 미칠 수 있음을 의미한다. 본 연구의 결과는 $MgSiO_3$ 결정질 및 비정질 물질의 압력에 의한 전자구조 변화의 미시적 기원을 이해하고 더욱 나아가 다양한 지구물질의 압력에 의한 원자구조 변화와 그에 수반되는 전자구조 변화의 관계를 이해하는데 많은 도움을 줄 수 있을 것이다.
Ti-50 at. % Ni 합금 타깃으로 PLD(pulsed laser deposition)방법을 사용하여 TiNi 형상기억합금 박막을 제작하였다. Ar분위기(200 mTorr)와 고진공분위기($5{\times}10^{-6}\;Torr$)에서 제작한 TiNi 박막의 조성 및 결정성의 변화를 조사했으며, 박막의 조성은 에너지 분산 엑스선 분광 분석(EDXS)을 이용하여 조사하였고, 박막의 결정성은 엑스선 회절장치(XRD)를 이용하여 조사하였다. 박막의 조성은 기판과 타깃의 거리에 의존되었지만, 기판의 온도와는 무관함을 알 수 있었으며, Ar 분위기에서 플룸 안쪽에 기판이 위치하였을 때 조성 제어가 용이함을 알 수 있었다. 또한, Ar 가스 분위기에서 증착 된 TiNi 박막은 고진공분위기에서 증착된 박막보다 더 낮은 온도(약 $400^{\circ}C$)에서 in situ로 결정화됨을 알 수 있었다. 이들 결과는, PLD방법으로 TiNi 형상기억합금 박막을 제작할 때 분위기 가스의 압력이 결정화 온도를 낮추어 주는 중요한 역할을 할 수 있음을 시사한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.