• Title/Summary/Keyword: 압력 챔버

Search Result 294, Processing Time 0.023 seconds

A study on copper thin film growth by chemical vapor deposition onto silicon substrates (실리콘 기판 위에 화학적 방법으로 증착된 구리 박막의 특성 연구)

  • 조남인;박동일;김창교;김용석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.318-326
    • /
    • 1996
  • This study is to investigate a chemical vapor deposition technique of copper film which is expected to be more useful as metallizations of microcircuit fabrication. An experimental equipment was designed and set-up for this study, and a Cu-precursor used that is a metal-organic compound, named (hfac)Cu(I)VTMS ; (hevaflouoroacetylacetonate trimethyvinylsilane copper). Base pressure of the experimental system is in $10^{-6}$ Torr, and the chamber pressure and the substrate temperature can be controlled in the system. Before the deposition of copper thin film, tungsten or titanium nitride film was deposited onto the silicon wafer. Helium has been used as carrier gas to control the deposition rate. As a result, deposition rate was measured as $1,800\;{\AA}/min$ at $220^{\circ}C$ which is higher than the results of previous studies, and the average surface roughness was measured as about $200\;{\AA}$. A deposition selectivity was observed between W or TiN and $SiO_{2}$ substrates below $250^{\circ}C$, and optimum results are observed at $180^{\circ}C$ of substrate temperature and 0.8 Torr of chamber pressure.

  • PDF

Combustion Modeling of Explosive for Pyrotechnic Initiator (파이로테크닉 착화기 화약 연소 모델링)

  • Cha, Seung-Won;Woo, Jeongmin;Kim, Yong-chan;Oh, Seok-Hwan;Cho, Jin Yeon;Kim, Jeong Ho;Jang, Seung-gyo;Yang, Hee Won;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.39-48
    • /
    • 2017
  • In this study, combustion modeling of ZPP and $BKNO_3$ mainly used in the PMD industries has been performed. Saint Robert's law, energy conservation equation, and the Noble-Abel equation of the state have been used for governing equations. The results of pressure obtained from established combustion models and actual CBT have been compared. In the case of ZPP, the model has predicted a pressure curve similar to that of the experimental results, but $BKNO_3$ has showed that the maximum pressure of the model is greater than the experiment at small chamber volume. For these gaps, the probability of $BKNO_3$ unburning has been considered.

Heat Transfer between Substrate and Substrate-heater in Low Vacuum (저진공 내 시료가열판과 시료의 열전달)

  • Park, Hyon-Jae;Oh, Soo-Ghee;Shin, Yong-Hyeon;Chung, Kwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.302-310
    • /
    • 2008
  • Heat transfer between substrate and substrate-heater in low vacuum was investigated. The convection related with gas flow and pressure, the heat conduction considering surface roughness and contact pressure, and the heat loss by radiation depending on the surface emissivity were considered. The coefficient of heat conduction $h_c$ in the Fourier's law were determined experimentally from the temperature difference between the substrate and the substrate-heater in the range of substrate-heater temperature $100\;-\;500^{\circ}C$, in the pressures of 300 mTorr - 1 Torr. The temperature difference was then calculated in the reverse way for the purpose of verification, using the heat flow and the experimentally determined coefficients. The verified temperature differences were thus obtained within 0.33 % error.

Improment of Diesel Combustion using multiple injection under Cold Start Condition (냉시동 조건에서 디젤 연소 특성 및 연소 개선에 대한 연구)

  • Lee, Haeng-Soo;Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.711-717
    • /
    • 2017
  • Startability and harmful emissions are the main issues in diesel engine development under cold conditions. The characteristics of combustion with multiple injection were investigated under cold start conditions. For quantitative analysis, the in-chamber pressure profile was measured and combustion visualization using direct imaging was accomplished. With multiple injection, the peak in-chamber pressure and heat release rate were increased compared to single injection. In addition, the period of flame luminosity detection was shortened using multiple injection. Combustion by main injection was improved with an increase in heat released by pilot combustion when the pilot injection quantity was increased. Finally, an increase in injection pressure also showed the possibility of combustion improvement. On the other hand, an increase of in the pilot injection quantity and injection pressure can cause an increase in harmful emissions, such as HC and CO due to wall wetting. Therefore, more sensitive calibration will be needed when applying a multiple injection strategy under cold start conditions.

The Effect of HiPIMS Conditions on Microstructure of Carbon Thin Film (카본 박막의 미세조직에 미치는 HiPIMS 공정조건의 영향)

  • Yang, Jae Woong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.1017-1024
    • /
    • 2017
  • Carbon thin films were deposited by HiPIMS(High Power Impulse Magnetron Sputtering). The properties and microstructures of carbon thin film were investigated with power, pressure, bias voltage and duty cycle. As the HiPIMS power increased, the deposition thickness increased and the surface tended to be rough. The increase in pressure also tended to make the surface rough, but the deposition thickness was not proportional to the pressure. As the bias voltage increased, the surface roughness became worse, the deposition thickness increased and then decreased from the critical bias voltage. Changes in the duty cycle have caused problems such as arcing, which is affected by the chamber structure and the size of the target. The $sp^2/sp^3$ fractions of thin films were estimated by XPS and it was confirmed that the fraction of thin films made by HiPIMS were larger than the fraction of thin films made by DC sputtering.

A Study on the Estimation of the Deformation of Object under Hydrostatic Pressure Test Using Image Processing (영상처리기법을 이용한 내압시험체의 변형도 추정에 관한 연구)

  • Lee, S.G.;Oh, S.W.;Choi, H.J.;Lee, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.287-292
    • /
    • 2011
  • To evaluate the pressure-resistant performance of underwater equipment, hyperbaric chamber test facility which can make the hydrostatic pressure is used. In this test, strain gage is generally applied to measure the strain of object under test is suitable for measuring a tiny deformation, but it can not measure a large deformation. Thus this paper suggests a method to estimate the over -order deformation of object under test by the image processing with the image acquired from underwater camera in the hydrostatic test. The main procedure of suggested method comprises the first step to find significant points by processing the image two dimensionally and the second step to estimate a deformation of object under test by tracking the motion of these points. If completing the remained research which is estimating the deformation and comparing it with a real one, it can be a method to measure the over -order deformation of object under test.

Study on the Dynamic Characteristics of Open Type Swirl Injector with Varyng Swirl Chamber Geometry (오픈형 스월 인젝터의 스월 챔버 형상 변화에 따른 동특성 연구)

  • Kim, Hyuntae;Chung, Yunjae;Jeong, Seokkyu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.619-625
    • /
    • 2015
  • Swirl injectors are widely used for Liquid Rocket Engine(LRE) as fuel injection system and following researches are also being carried out throughout the world. Especially, solving combustion instability problem is essential for every type of LREs. In this study, cold test was carried out for open type swirl injector as a fundamental research to solve combustion instability problem. Pressure fluctuation was applied to the inlet flow coming into the injector and the following response characteristics were observed. The effect of swirl chamber geometry was also studied by changing both swirl chamber length and diameter.

A Study of Liquid Nitrogen Inert Gas System for LNGC Diesel Engine Crank Chamber (LNGC 디젤기관 크랭크 챔버용 액체질소 불활성가스 시스템에 관한 연구)

  • Choi, Bu-Hong;Kim, Hyun-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.279-285
    • /
    • 2012
  • It is necessary to install the inert gas system(IGS) for preventing fire and explosion in LNGC main diesel engine crankcase besides oil mist detector(OMD) unit with $CO_2$ gas injector. Therefore, to design the liquid nitrogen IGS, analytical work is conducted for predicting the heat input load of liquid nitrogen heater with two-phase stratified flow model. This paper also presents the effects of changes in pipe diameter, saturated pressure, and inclination angle by ship's movement on cryogenic two-phase stratified flows. It is found that the stratified model gives reasonable predictions, and the model is effective to predict the heat input load of liquid nitrogen IGS.

저온 플라즈마 반응기에서의 수정충돌주파수를 이용한 실리콘 나노 입자 형성 모델링

  • Kim, Yeong-Seok;Kim, Dong-Bin;Kim, Hyeong-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.217.1-217.1
    • /
    • 2014
  • 반도체 및 디스플레이 산업은 많은 공정들에서 저온 플라즈마 반응을 이용한다. 특히 소자 제작을 위한 실리콘 박막의 증착은 저온 플라즈마 공정의 주요 공정이다. 하지만 실리콘 박막을 합성하는데 있어서 저온 플라즈마에서 형성되는 실리콘 나노 입자는, 오염입자로써 박막의 특성을 악화시켜 소자생산 수율을 악화시키는 주요 원인이 되고 있다. 따라서 플라즈마에서 입자 형성의 원인이 되는 화학반응 및 입자들의 성장 매커니즘에 대한 연구는, 1980년대 플라즈마 공정에서 입자 합성이 보고된 이래 공정의 최적화를 위해 꾸준히 연구되어왔다. 이러한 매커니즘의 연구들은, 플라즈마 화학반응에 의해 실리콘 입자 핵을 만들어 내는 과정과 입자들이 충돌에 의해 성장해가는 과정으로 나눠진다. 플라즈마 화학 반응 과정은 아레니우스 방정식에 의해 정의된 반응계수를 이용하여 플라즈마 내 전자와 이온, 중성 화학종들이 전자 온도와 전자 밀도, 챔버 온도 등에 의해 결정되는 현상을 모사한다. 또한 이 과정에서 실리콘을 포함하는 화학종들의 반응에 의해 핵이 생성 되가는 양상을 모사한다. 생성된 핵은 충돌에 의해 입자가 성장해 가는 과정의 가장 작은 입자로써 이용된다. 입자들이 성장해가는 과정은 입자들이 서로 충돌하면서 다양한 입경의 입자로 분화되어가는 현상을 모사한다. 이 과정에 의해 다양한 입경분포로 분화된 입자들은 플라즈마 내 전자에 의해 하전되며, 이러한 하전 양상은 입경에 따라 다른 분포를 보인다. 본 연구에서는 입자의 하전 분포를 고려하여, 입자들의 성장의 주요 원인인 입자간의 충돌을 대표하는 충돌주파수를 수정하는 방식을 채택하여 보다 정밀한 입자 성장 양상을 모델링하였다. Inductively coupled plasma (ICP) 타입의 저온 플라즈마 반응기에서 합성된 입자들을 Particle Beam Mass Spectrometer (PBMS)와 Scanning Electron Microscope (SEM)를 이용하여 입경분포를 측정한 데이터와 모델링에 의해 계산된 결과를 비교하여 본 모델의 유효성을 검증하였다. 검증을 위해 100~300 mtorr의 챔버 압력 조건과 100~350 W의 입력 전력 조건들을 달리하며 측정한 결과와 계산한 데이터를 조건별로 비교하였다.

  • PDF

An Experimental Study on the Effect of Swirler Mass Flowrate and Flare Exit Length on Flow Patterns inside a Model Combustor Chamber (스월러 플레어 출구길이가 모델 챔버내 유동에 미치는 영향에 대한 실험적 연구)

  • Ryu, Gyong Won;Jin, Yu In;Kim, Yeong Ryon;Kim, Hong Jip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.70-75
    • /
    • 2016
  • A swirler is a flame holding device generating recirculation regions in a gas turbine combustor, and the flow pattern due to a swirler has major effects on the flame distributions, combustion efficiency, and characteristics of exhaust gas. An experimental study for a counter-rotating swirler has been conducted to find out effects of the mass flow rate ratio of the inner/outer swirler flow area, the pressure difference between the swirler inlet and outlet, and the flare exit length ratio on the flow patterns in a model combustion chamber by using PIV(Particle Image Velocimetry) technique.