• Title/Summary/Keyword: 압력 용기 해석 프로그램

Search Result 22, Processing Time 0.022 seconds

추진기관 연소관의 결함 영향 분석에 관한 연구

  • 김성은;문순일;오광환;김정배;이원기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.171-177
    • /
    • 1995
  • 추진기관 연소관 제작시 발생하는 결함등에는 주로 표면결함의 형태의 것이 많은데 연소관 설계시 이러한 결함들의 영향을 고려하는 것이 구조물의 안정성에 있어 중요한 요소가 된다. 따라서 본 논문에서는 연소관에 발생할수 있는 결함들에 대한 파단하중 및 파단압력에 대한 탄성 및 탄소성해석을 통하여 파괴 매개변수인 J적분을 유한요소 프로그램인 ABAQUS를 이용하여 3차원 비선형해석을 수행하여 5가지의 균열모델을 사용하여 평판, 양단개방 압력용기(open tube) 및 양단막힘 압력용기 (closed tube)의 파단하중하에서의 J적분의 영향을 분석하였다. 평판 결함시편의 J적분으로부터 압력용기의 손상허용설계를 할 수 있는 방안을 조사 하였으며 추진기관 연소관에 적용하여 발생가능한 크기의 결함에 대한 안정성을 조사한결과 충분한 안정성을 확보하고 있음을 알수 있었다.

  • PDF

Dynamic Stress Intensity Factor and Dynamic Crack Propagation Velocity in Nuclear Pressure Vessel Steels (원자로압력용기강의 동적 응력확대계수와 동적 균열전파속도)

  • Lee, O.S.;Han, M.K.;Han, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.251-257
    • /
    • 1998
  • 동적 파괴인성치 측정시스템과 동적 2차원 유한요소해석 프로그램을 개발하여 원자로압력용기에 사용하는 강(SA508 cl.3, SA516 gr.70)의 동적 파괴인성치와 동적 균열정지인성치를 평가하고 이에 대한 유용성을 확인하였으며, 이 시스템 을 이용하여 재료의 동적 파괴특성을 규명하였다. SA508 cl.3와 SA516 gr.70의 동적 균열전파속도(a)에 대응하는 동적 응력확대계수 (K(a))에 대한 실험식을 얻었으며, 동적 응력확대계수와 동적 균열전파속도와의 관계는 전형적인 "$\Gamma$" 형으로 나타남을 확인하였다.

  • PDF

Development of Customizing Program for Finite Element Analysis of Pressure Vessel (압력 용기 유한 요소 해석 프로그램 개발)

  • Jeon, Yoon-Cheol;Kim, Tae-Woan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.654-659
    • /
    • 2003
  • PVAP (Pressure Vessel Analysis Program V1.0) was developed by adopting the finite element analysis program ANSYS V6.0, and Microsoft Visual Basic V6.0 was also utilized for the interfacing and handling of input and output data during the analysis. PVAP offers the end user the ability to design and analyze vessels in strict accordance with ASME Section VIII, Division 2. More importantly, the user is not required to make any design decisions during the input of the vessel. PVAP consists of three analysis modules for the finite element analysis of the primary components of pressure vessel such as head, shell, nozzle, and skirt. In each module, finite element analysis can be performed automatically only if the end user gives the dimension of the vessel. Furthermore, the calculated results are compared and evaluated in accordance with the criteria given in ASME Boiler and Pressure Vessel Code, Section VIII, Division 2. In particular, heat transfer analysis and consecutive thermal stress analysis for the junction between skirt and head can be carried out automatically in the skirt-tohead module. Finally, report including the above results is created automatically in Microsoft Word format.

  • PDF

Development of Optimization Code of Type 3 Composite Pressure Vessels Using Semi-geodesic algorithm (준측지궤적 알고리즘을 이용한 타입 3 복합재 압력용기의 최적설계 프로그램 개발)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Cheol-Ung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Composite vessels for high pressure gas storage are commonly used these days because of their competitive weight reduction ability maintaining strong mechanical properties. To supplement permeability of composite under high pressure, it is usually lined by metal, which is called a Type 3 vessel. However, it has many difficulties to design the Type 3 vessel because of its complex geometry, fabrication process variables, etc. In this study, therefore, GUI (graphic user interface) optimal design code for Type 3 vessels was developed based on semi-geodesic algorithm in which various factors of geometry and fabrication variables are considered and genetic algorithm for optimization. In addition, hydrogen vessels for 350/700 bar that can be applied to FCVs(fuel cell vehicles) were designed using this code for verification.

구형 압력용기의 초소성 성형 공정에서 두께변화 예측에 관한 이론해석

  • Yoon, Jong-Hoon;Lee, Ho-Sung;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.133-141
    • /
    • 2003
  • When superplastic forming process is employed in manufacturing spherical pressure vessel, the thickness and spherical profile are not constant and varies during the forming process. In the current study, theoretical analysis for the prediction of thickness change was carried out under the consideration of membrane theory which has been employed in Kuglov et. al.'s study. Then the thickness of initial blank to obtain the required thickness at the final forming step, the time vs. pressure profile which yields uniform deformation in blank, and the thickness distribution according to the position at each forming step have been determined. The employed model and the developed analytical code were verified throughout comparing the theoretical predictions at each forming stage with the experimental results shown in literature.

  • PDF

Numerical Study on the Leakage Safety of O-rings for a LPG Cylinder Valve (LPG 용기 밸브용 O-링의 누설안전성에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.37-42
    • /
    • 2007
  • This paper presents the leakage safety of two O-rings, which are located at the rectangular groove between a valve body and a valve stem. The leakage safety analysis of 0-ring seals has been computed as functions of a compression set and a liquefied petroleum gas pressure of a LPG cylinder using a FEM program, MARC. The FEM computed results indicate that the loads from the filling pressure of $8kg/cm^2$ to the upper limit of the safety valve, $24.8kg/cm^2$ work safely according to the pressure vessel code. But two O-rings should consider the aging effects for an increased safety of the o-ring.

  • PDF

표준 공정 / 시험 평가용 복합재 압력용기에 관한 연구

  • Hwang, Tae-Gyung;Jung, Hyun-Jo;Jung, Sang-Gi;Jung, Bal;Kang, Byung-Yoon;Kim, Jong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.11-19
    • /
    • 1995
  • 본 논문은 국과연에서 수행하고 있는 표준 공정/시험 평가용 복합재 압력용기(STEB)의 파괴압력 향상 프로그램중의 일부로서 설계/해석및 제작에 관한 내용을 정리하였고, 또한 성능 계수(Performance factor)를 이용하여 설계/공정 수준을 선진 외국과 비교해 보았다. 본 연구를 통해 여러 필라멘트 와인딩 공정 변수로인한 이론적인 설계/해석과 실제 제작된 제품간의 차이를 확인할 수 있었으며, 보강 설계를 통해 파괴 압력은 선진외국과 유사한 수준에 이르렀으나 성능 계수면에서는 약 76%정도에 머무르고 있음을 확인하였다.

  • PDF

Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding (필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Composite pressure vessels with HDPE (high density polyethlyne) liner with metal boss at each end were developed by Filament Winding Process. The vessel is composed of a dome-shaped part at each end and a cylinder-shaped part at the middle of the vessel. The environmental tests carried out for possible vessel materials such as High Density Polyethlyn (HDPE), resins and reinforcing fibers up to a year showed no significant damages. The boss was designed to minimize the gas leak which was verified by FEM analysis. Most ideal fiber tension was obtained by experimental method and the fiber volume fraction, $\textrm{V}_{f}$, obtained by image analyzer were 55.4 % in cylinder and 55.6 % in dome parts, respectively. Winding pattern is programmed to control the composite thickness in the dome areas such that the failure of the vessel may occur in the cylinder. During the cure, the vessel was rotated and a constant internal pressure of 0.62 bar was applied. From this, the vessel's burst pressure is improved by 28 %. The burst and fatigue tests for under-wound and fully wound vessel showed satisfactory results.

A Study on the Structural Analysis with Geometry Design for Dome of a Composite Pressure Vessel (복합재 압력용기의 돔형상 설계에 따른 구조 해석)

  • Kim, Minsik;Bae, Joochan;Kim, Donggeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.825-831
    • /
    • 2017
  • In this study, we perform the design of dome geometry for the composite pressure vessel with applying the equation of Fulton and Vasiliev considering external load(thrusts). Variables of the dome geometry are opening radius ratio(${\rho}_0$) from 0.1 to 0.5 and thrust level from 40kN to 200kN. We conduct Finite Element Analysis(FEA) by using ABAQUS. As a result, the strain of the composite pressure vessel has shown strain gradient from inner to outer of dome surface. And the strain gradient may cause crack of resin inside the composite laminate. Strain gradient of Fulton dome is monotonously decreased as the ${\rho}_0$ increases, but the strain gradient of Vasiliev dome bas shown some different trend. when ${\rho}_0{\leq}0.1$, strain gradient of Fulton's is higher than Vasiliev's. But when 0.1<${\rho}_0$<0.35, strain gradient of Vasiliev's becomes higher than Fulton's. And in the case of $0.35{\leq}{\rho}_0$, strain gradient of Vasiliev's is higher than Fulton's. So the Vasiliev dome is more effective in ${\rho}_0{\leq}0.1$ condition and Fulton dome is more effective in $0.35{\leq}{\rho}_0$ condition. So, it's important for dome design to consider the crack of resin cause of the strain gradient.

  • PDF