• Title/Summary/Keyword: 압력 강하 계수

Search Result 178, Processing Time 0.025 seconds

Development of Pressure Drop Model for the Compartment in Reactor Containment (격납용기내 구분방사이의 압력 강하 계산모델 개발)

  • Park, Cheol;Song, In-ho;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.183-193
    • /
    • 1986
  • Full scale HDR containment experiment series pointed out that the previous containment analysis models have a number of shortcomings. One of them is on the calculational model of short term (0~2sec) pressure difference. The pressure differences between subcompartments are dependent on the flow rate, fluid density, head loss coefficient, and flow area ratio. It, however, is not known that any of them is largely attributed to the disagreement of pressure difference between the measured and the calculated values. In this study, the head loss coefficients are expressed with another form to improve the analytic model. The pressure and the pressure difference are evaluated by using COMPARE code with new correlation, and the results show better agreements with experimental values for V.42 test, but overestimate the measured values for V, 43 and underestimate for V.44.

  • PDF

A Study on the Compression Behaviour of Filter Cake (필터 케익내의 압축현상에 관한 연구)

  • 김정민;정용원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.469-470
    • /
    • 1999
  • 본 연구는 가스 중에 포함되어 있는 입자들을 fabric filter를 이용하여 집진할 때 형성되는 dust filter cake의 구조 및 압력강하가 입자간의 부착력(adhesion force), 마찰계수(friction coefficient)등의 여러 관련변수에 따라 변화되는 양상을 전산모사를 통해 예측하고자 하는 것이다.(중략)

  • PDF

Investigation on Characteristics of Pressure Drop and Heat Transfer in the Spirally Indented Tubes (스파이럴리 인덴티드 전열관 내부에서의 압력 강하 및 전열 특성에 관한 고찰)

  • Kim, Do-Hyoung;Kim, Ik-Saeng;Kim, Kyun-Seok;Yoo, Byoung-Hoon;Kim, Chun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.440-446
    • /
    • 2001
  • The pressure drop and heat transfer of the spirally indented tubes were measured and analyzed. Eight sample tubes of indentation depth 0.4, 0.7mm and indentation pitch 10, 14, 20, 26mm were used in this experimental tests. And all the tubes have same outer diameter of 16mm, and same indentation start number of I. Air was used as the internal fluid from 10000 to 50000 for Reynolds Number. The friction factors and heat transfer coefficients have increased when indentation depths increase and indentation pitches decrease. Finally, the correlations were made between the effect of the tube geometry and characteristics of tubes for the pressure drop and heat transfer.

  • PDF

Pressure Drop in a Helical Square Duct (나선형 사각덕트 내의 압력강하)

  • Ryu, Seung-Yeob;Yoon, Juh-Yeon;Lee, Doo-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.398-403
    • /
    • 2001
  • Pressure drop at a helical square duct orifice is numerically evaluated. The orifice is installed at the entrance of a once-through steam generator tube to suppress flow instabilities. The calculated results are compared with the available experimental correlations, and showed good agreement. Effects of curvature ratio and characteristics of the secondary flow with Reynolds number are reported. Through the numerical simulations, pressure drop mechanisms were well understood inside the compact and complicated orifice geometry.

  • PDF

Characteristics of Fin-Side Heat-Transfer and Pressure Drop in a Condenser for Automobile (자동차용 응축기의 휜 열전달 및 압력강하 특성)

  • 곽경민;이홍열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.152-158
    • /
    • 2004
  • An experimental study was performed to determine the fin-side heat transfer and pressure drop of a condenser for automobile. Five sample with different fin height and louver angle were tested, 9mm, 8mm, 7.5mm, 5.4mm and 4.5mm. Results are presented as plot of Colburn j-factor(or heat transfer coefficients) and friction factor(or pressure drop) against the Reynolds number(or inlet air velocity) based on louver pitch, in the range of 110 to 480. The results show that both heat transfer and pressure drop on the fin are mainly affected by the louver angle in a lower range of air velocity, but, by the fin height in a higher range of air velocity. The performance of 5.4mm fin is the highest, compared to other fin sample.

Experiments on Single Phase Cooling Heat Transfer and Pressure Drop Characteristics in Microfin Tubes (마이크로휜관 내 단상 냉각 유동 열전달 및 압력 강하 특성에 관한 실험적 연구)

  • 이규정;한동혁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2002
  • Experiments on the single phase cooling heat transfer and pressure drop with microfin tubes were performed using water as a test fluid. Experimental data were obtained in the range of Reynolds number 3000 ~40000 and Prandtl number 4-6. The data of microfin tubes presented the characteristics of rough surface tube in pressure drop and heat transfer Experimental data were compared with the heat transfer and friction factor correlations of smooth tubes. Heat transfer enhancements of microfin tubes were lower than pressure drop penalty factors. The helix angle is more significant parameter in both of the pressure drop and heat transfer than the relative roughness. The correlations of Nusselt number and friction factor were suggested for the tested microfin tubes. Maximum deviations between correlations and experimental data were within $\pm15$% for Nusselt number and $\pm10$% for friction factor.

A study on the pressure drop characteristics of plate and shell heat exchangers (Plate and Shell 열교환기의 압력강하 특성에 관한 연구)

  • Seo, Moo-Kyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.25-30
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) has been applied to the refrigeration and air conditioning systems as evaporators or condensers fur their high efficiency and compactness. The purpose of this study is to analyze the characteristics of pressure drop in plate and shell heat exchanger. An experiment for single phase (low pressure drop in plate and shell heat exchanger was performed. Also numerical work was conducted using the FLUENT code for $ {\kappa}-{\varepsilon}$ model. The dependence of friction factor on geometrical Parameters was numerically investigated. The study examines the internal flow and the pressure distribution in the channel of plate and shell heat exchanger. The results of CFD analysis compared with experimental data, and the difference of frictor factor in plate side and shell side are 10% and 12%, respectively. Therefore, the CFD analysis model is effectively predict the performance of plate and shell heat exchanger.

  • PDF

The Pressure Drop Characteristics in Small Diameter Tubes Using HCFC Alternative Refrigerants (세관내 HCFC계 대체냉매의 압력강하에 관한 연구)

  • Son, C.H.;Lee, H.R.;Jeong, J.H.;Choi, Y.S.;Oh, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.347-352
    • /
    • 2000
  • The pressure drop characteristics of R-22 and R-410A(a mixture of 50wt% R-32 and 50wt% R-125) flowing in a small diameter tube with 1.77[mm] inner diameter and 3.14[mm] outer diameter was investigated experimentally. the mass fluxes of refrigerants are ranged from 450 to $1050[kg/(m^2{\cdot}s)]$ and the qualites are varied from 0.05 to 0.95. The main experimental results were summarized as follows; The single-phase liquid friction factors for small diameter tubes are higher than those predicted by the Blasius equation. In case of two-phase flow, the pressure gradient of the small diameter tube increases with increasing mass velocity and vapor quality. The experimental data are not well correlated by predictions which were proposed for the large diameter tube.

  • PDF

The study on the measurement for the pressure drop and friction factor of corrugated metal pipes (주름관에서의 압력강하와 마찰손실 계측에 관한 연구)

  • Yun, Young-Sun;Kang, Jun-One;Yoo, Jai-Suk;Kim, Hyung-Jung
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.76-80
    • /
    • 2006
  • The data for friction factor of the pipe correlated by Reynolds number and relative roughness have been reported well as a Moody chart. However, the results for corrugated shapes have been not investigated sufficiently. In this research, therefore, the pressure drop and friction factor are obtained. Flexible metal tubes with corrugations for the measurement are made of stainless steel plates. The kinds of tubes for the measurement are 5 annular types and helical types. The pressure drop & the velocity of the flow are obtained by micromanometer & digital pressure sensor, supplying dry air at several steps. Then the pressure drop is calculated for each tube, using the obtained data. The result shows that the pressure drop is strongly influenced by the viscous dissipation of kinetic energy due to the circulation of flows, rather than a viscous friction loss. The pressure drop increased consistently as the Reynolds number increases.

  • PDF

Characteristics of Pressure Drops in Square Channels with Twisted Tape Inserts plus Axial Interrupted Ribs (테이프와 거칠기가 설치된 사각 채널의 압력강하 특성)

  • Ahn, S.W.;Bae, S.T.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.38-42
    • /
    • 2006
  • Pressure drops and friction factors in square channels with twisted tape inserts plus axial interrupted ribs are investigated. Tests are performed for Reynolds numbers ranging from 8,900 to 29,000. The rib height-to-channel hydraulic diameter, $e/D_h$, is kept at 0.057 and test section length-to-hydraulic diameter, $L/D_h$ is 30. The pressure drops and friction factor values are enhanced with axial interrupted ribs and twisted tape inserts. Square channels with twisted tape inserts plus axial interrupted ribs show the greatest pressure loss penalty in the present work. Friction factor data obtained for the square channel with twisted tape inserts plus axial interrupted ribs are less than those in the past publications for circular tubes with axial interrupted ribs and twisted tape inserts.

  • PDF