• Title/Summary/Keyword: 압력 간섭

Search Result 139, Processing Time 0.034 seconds

Measurement of Internal Defects of Pressure Vessels using Unwrapping images in Digital Shearography (Digital Shearography 에서 Unwrapping 이미지와 FEM 을 이용한 압력용기의 내부결함 측정)

  • Kim, Seong-Jong;Kang, Young-June;Sung, Yeon-Hak;Ahn, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Pressure vessels in vehicle industries, power plants, and chemical industries are often affected by flaw and defect generated inside the pressure vessels due to production processes or being used. It is very important to detect such internal defects of pressure vessel because they sometimes bring out serious problems. In this paper, an optical defect detection method using digital shearography is used. This method has advantages that the inspection can be performed at a real time measurement and is less sensitive to environmental noise. Shearography is a laser-based technique for full-field, non-contacting measurement of surface deformation (displacement or strain). The ultimate goal of this paper is to detect flaws in pressure vessels and to measure the lengths of the flaws by using unwrapping, phase images which are only obtained by Phase map. Through this method, we could decrease post-processing (next processing). Real length of a pixel can be calculated by comparing minimum and maximum unwrapping images with shearing angle. Through measuring several specimen defects which have different lengths and depths of defect, it can be possible to interpret quantitatively by calculating gray level.

2-Parameter High Frequency Combustion Instability Model (2-파라메타 모델에 의한 고주파 연소불안정 해석)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.74-83
    • /
    • 1997
  • The definition of burning admittance and conventional n-$\tau$ stability rating technique are combined to investigate the high frequency combustion instabilities inside the cylindrical combustion chamber. Perturbed flow variables are written as the sum of fluctuating and time-averaged mean quantities on the assumption that the terms of the order higher than unity are sufficiently small, hence linearized governing equations could be formulated. Chamber admittances up and downstream of the flame front calculated with appropriate boundary conditions result in the burning admittance and corresponding n-$\tau$ neutral stability curve. Configurational and operational design factors are tested to detect the unstable wave-induced LOX-RP1 combustion instabilities. Operational design factors, e.g. pressure or O/F ratio, appear less influential to drive high frequency instability while the location of the flame front and configurational factors enhance or deteriorate the stabilities strongly. Conclusively, LOX-RP1 combustion inside the cylindrical combustion chamber is apt to be unstable against long residence time and shortened chamber length.

  • PDF

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.

Effects of the Parenting Attitude on Children's Thinking Ability (유아의 사고능력에 대한 부모 양육태도의 영향)

  • Lim, Ho-Chan
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.3
    • /
    • pp.613-634
    • /
    • 2008
  • This Study focused on understanding the relationship between the child ren's thinking ability which is based on the genius and the parenting attitude according to their level of age. There were 401subjects including mothers and their children who lived in Seoul city ages from four to six. The Raven CPM testing method for children and the parenting attitude test were used as research tools. Subcategories of the parenting attitude test consisted of the supportive expression, the rational explanation, the achievement press, high involvement, punishment, superintendence, high expectation, and inconsequence. Results showed that by age four children's thinking abilities were affected by the rational explanation, the achievement press, punishment, and superintendence. At age five, the supportive expression and superintendence were important factors to the thinking ability. By age six children were affected by the supportive expression, the rational explanation, punishment and high expectation. It was also discussed the positive or negative effects of the parenting attitude sub-scales to the development of the thinking ability. These results showed the parenting attitudes need to be changed according to the child's age for getting more resonable results to their children's thinking ability.

Calculation of the Rudder Normal Force for a Horn Type Rudder and Twin Rudder (Horn Type 타(舵)와 한쌍(雙)의 타(舵)의 타직압력(舵直壓力) 계산(計算)에 관한 연구(硏究))

  • Seung-Keon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.27-31
    • /
    • 1990
  • To calculate the lift of a thin lifting surface like the ship-rudder, it is popular to replace the lifting surface by a series of vortices. Two methods, which are vortex lattice method and mode function method, are frequently used to distribute the vortices on the lifting surface. In this paper, the intermediate way of two mentioned calculation method is carried out to exploit the merits of them. The basic concept of this method is to divide the lifting surface with several strips in span-wise and replace vortices to the chord-wise at each strips. A horn type semi-balanced rudder is chosen for the real method, and the validity of the proposed calculation is pursued by the open water test of the same rudder. Finall, this method is applied to the calculation of the interference between the two homogenous rudders siting parallel to the free stream.

  • PDF

Performance Analysis of TPMS Beamformer According to Variance of Antenna Interelement Spacing (안테나 간격 변화에 대한 TPMS 빔형성기 성능분석)

  • Choi, Byung-Sang;Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.907-915
    • /
    • 2013
  • Tire Pressure Monitoring System (TPMS) is an auxiliary safety system for recognizing the condition of tires based on the pressure and temperature data transmitted from the sensor unit installed on a tire of the vehicle. Using TPMS, a driver can frequently check the state of tires and it aids to maintain the optimum running condition of the vehicle. Since TPMS must utilize the wireless communication technique to transmit data from a sensor unit to a signal processing unit installed in the vehicle, it suffers from interference signals caused by various external electrical or electronic devices. In order to suppress high-power interference signals, we employ beamforming techniques based on the uniform linear antenna array. As the number of the antennas is increased, the performance of the interference suppression is improved. However, there is the limit of the number of antennas, installed in the center of a vehicle, because of its size. In this paper, we compare and analyze the performance of the beamformer, when reducing the interelement spacing of antennas, to increase the number of the receiving antennas. For the performance analysis of the beamformers, we consider the switching beamformer and minimum-variance distortionless-response (MVDR) beamformer for TPMS, recently proposed.

Moire Interferometry Measurement and Numerical Analysis for Hygroscopic Swelling of Al-Polymer Joint (Al-Polymer 접합체의 흡습팽창에 대한 모아레 간섭 측정 및 수치해석)

  • Kim, Kibum;Kim, Yong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3442-3447
    • /
    • 2014
  • A simple method to evaluate the hygroscopic characteristics of polymer of microelectronic plastic package is suggested. To evaluate the characteristics, specimens were prepared, and the internally absorbed moisture masses were measured as a function of the absorbing time and calculated numerically. The hygroscopic pressure ratio was calculated by heat transfer analysis supported by commercial FEM code because the hygroscopic diffusion equation has the same form as the heat transfer equation. The moisture masses were then summed by the self developed code. The nonconductive polymers had quite different characteristics for the different lots, even though they were the same products. The absorbed moisture mass variations were calculated for several different characteristics, and the optimal curve of the mass variation close to experimental data was selected, whose solubility and diffusivity were affected by the hygroscopic characteristics of the material. The method can be useful in the industrial fields to quickly characterize the polymer material of the semiconductor package because the fast correspondence is normally required in industry. The weight changes in the aluminum-nonconductive-polymer joint due to moisture absorption were measured. The deformed system was also measured using the Moire Interferometry system and compared with the results of finite element analysis.

Acoustic Sensitivity Analysis of a Ring-type Probe Based on a Fiber-optic Sagnac Interferometric Sensor (광섬유 사냑 간섭형 센서에 기반한 링형 탐촉자의 수중 음향 민감도 해석)

  • Lee, Yeon-Woo;Kwon, Hyu-Sang;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • To measure underwater acoustics using a fiber-optic Sagnac interferometric sensor, the sensitivities of ring-type probes are investigated by theoretical and experimental studies. A ring-type probe was fabricated by packaging a single-mode fiber wound around an acrylate cylinder of diameter 5 cm with epoxy bond. The probes were prepared as A-type, which was packaged with 46.84 m of sensing optical fiber, and B-type, which was packaged with 112.22 m of sensing fiber. The underwater acoustic test was performed at frequencies of 50, 70, and 90 kHz, and over a range of acoustic pressure of 20-100 Pa, to study the sensitivity. A commercial acoustic generator was located 1 m from the acoustic sensor, such as the ring-type probe or a commercial acoustic sensor. From the experimental test, the acoustic sensitivity of the ring-type probe had different values due to acoustic frequencies, unlike the theoretical prediction. Therefore, the experimental sensitivities were averaged for comparison to the theoretical values. These averaged sensitivities are 25.48 × 10-5 rad/Pa for the A-type probe and 60.79 × 10-5 rad/Pa for the B-type probe. The correction coefficient of Young's modulus c was determined to be 0.35.

A Study of the Plume-Induced Shock Wave on Supersonic Afterbodies (초음속 동체후미부에서 발생하는 Plume-Induced Shock Wave에 관한 연구)

  • Lee Young-Ki;Kim Heuy-Dong;Raghunathan Srinivasan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.399-402
    • /
    • 2005
  • The present numerical study describes the flow physics on the interaction between the supersonic freestream and jet plume. The compressible flow past a simplified afterbody model with a sonic nozzle is investigated using mass-averaged Navier-Stokes equations, discretized by a fully implicit finite volume scheme, and the standard $k-{\omega}$ turbulence model. The results obtained through the present study are discussed specifically regarding the effect of the plume pressure ratio, freestream Mach number and base dimensions on the location of the plume-induced shock wave generated on the afterbody by the underexpansion of the jet plume.

  • PDF

A Study on Design and Verification of Power Monitoring Unit for Unmanned Aerial Vehicle (무인항공기용 전원모니터링장치 설계 및 검증에 관한 연구)

  • Woo, Hee-Chae;Kim, Young-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • This paper describes a Power Monitoring Unit (PMU) for Unmanned Aerial Vehicle (UAV) electrical system, It is designed for the PMU which performs data sensing of generator, transformer rectifier unit (TRU), battery and gear box installed in UAV and operate power ON/OFF devices of mission equipment. The PMU measures the voltage and current for the aircraft power source (generators, transformer rectifier unit and battery), measures the pressure and temperature of the gearbox, and performs the mission equipment power command received from the mission computer. The PMU was designed to meet the requirements of the UAV, and was performed through structure/thermal analysis, environmental test, EMI test and ground/flight tests.