• Title/Summary/Keyword: 압력용기 설계

Search Result 183, Processing Time 0.033 seconds

Optimization Design of a Gas Valve for a LPG Cylinder Using a Taguchi's Experimental Method (다구찌 실험법을 이용한 액화석유가스 용기용 밸브의 최적설계에 관한 연구)

  • Kim, Chung-Kyun;Oh, Kyoung-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.23-28
    • /
    • 2006
  • This paper presents the strength safety and the weight reduction analysis of nine gas valve models for a LPG cylinder using a finite element analysis program, MARC and Taguchi's experimental method. The maximum Von Mises stress of a gas valve body represents a safety of a brass valve structure for the given gas pressure of $91kg/cm^2$, which considered a safety factor of a LPG gas cylinder. The weight reduction analysis is very important for reducing a gas flow friction loss and a manufacturing cost as a design parameter. The calculated results present an design model 9 as an optimized design data with 10mm radius of a lower part gas flow pipe A, 6mm radius of an upper part gas flow pipe B and a connecting length 2 mm of tapered pipe D between lower and upper pipes.

  • PDF

Design of Portable Welded-Nitrogen Vessel (11 kg, 10 L and 50 bar) for Shipbuilding (선박용 휴대형 질소용기(11 kg, 10 L 및 50 bar)의 두께 및 외형 설계)

  • Seong, Hansaem;Kim, Jaeyeol;Eom, Taejin;Kawk, Hyo Seo;Lee, Kwang O;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.263-270
    • /
    • 2017
  • The shipbuilding industry uses large stationary tanks to store low-pressure air, which is used to open and close large shut-off valves. However, when supplying air from the tank to a distant valve, there are problems related to the need for supplementary pipes and the pressure drop during transportation. In this study, a portable welded vessel for storing high-pressure nitrogen (11 kg, 10 L, and 50 bar) was designed to prevent air leakage and improve the convenience of workers. This pressure vessel was elliptical to reduce the number of welded parts, which are structurally weak. The thickness and ratio of the major and minor axes of the pressure vessel were calculated to verify its structure stability at the working pressure (50 bar), and that the proposed weight and capacity were satisfactory. The residual stress caused by the welding process was calculated by performing a transient thermal-structural coupled field analysis using the ANSYS parametric design language (APDL), and the fatigue life of the vessel was verified based on the Goodman criterion.

관류형증기발생기의 열수력학적 설계 및 성능분석 프로그램, ONCESG의 개발

  • 윤주현;김긍구;이두정;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.344-351
    • /
    • 1995
  • 증기발생기가 원자로압력용기안에 위치한 일체형원자로의 개발을 위해서 가장먼저 개발되어야 할 요소기술은 관류형 증기발생기의 설계기술이다. 증기발생기는 기존의 상용로에서 사용되고 있는 재순환형 증기발생기와 관류형 증기발생기로 분류 할 수 있는데, U-튜브를 사용하는 재순환형 중기발생기의 경우 습분분리기와 증기건조기 등이 많은 공간을 요구하고 있고, 또한 중기발생기를 압력용기 안에 위치시킬 경우 일차측과 이차측의 냉각수 유로형태, 유동장의 안정성 등의 문제 때문에 일체형원자로에서는 관류형 증기발생기의 도입이 일반화 되어있기 때문이다. 본 연구에서는 관류형(직관 및 나선 전열관형) 증기발생기의 열수력학적 설계 및 성능분석을 위한 프로그램, ONCESG를 개발했다. 개발된 모델링 및 컴퓨터코드의 검증을 위해 외국의 관류형 중기발생기(직관형:미국/영국의 SIR, 나선형:일본의 MRX, SPWR)의 설계자료를 ONCESG프로그램을 사용해 모사한 결과와 이미 발표된 설계자료와의 비교분석을 수행했다. 모사결과 계산된 관류형 증기발생기의 열전달면적, 압력 및 온도분포가 외국의 발표된 설계자료와 잘 일치했으며, 개발된 ONCESG코드를 일체형 신형원자로의 개념설계시 다양한 목적으로 활용할 수 있음을 보였다.

  • PDF

Optimal Process Planning of CNG Pressure Vessel by Ensuring Reliability and Improving Die Life (CNG 압력용기의 최적 공정설계를 통한 공정의 신뢰성 확보 및 다이 수명 향상)

  • Bae, Jun Ho;Lee, Hyun Woo;Kim, Moon Saeng;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.865-873
    • /
    • 2013
  • The deep drawing and ironing (DDI) process involving the use of a high-capacity horizontal press is used for manufacturing acompressed natural gas (CNG) pressure vessel. However, some variables of the DDI process have been determined based on the experiences of workers, and the short die life needs to be improved for manufacturing the pressure vessel withhighquality and lowcost. In this study, process variables such as the draw ratio, distance between dies, radius of rounding of drawing die, and angle of ironing die are chosen to enhance the reliability and improve the die life based on previous studies and experiences. The draw ratio limits at which no tearing or wrinkling occurs are determined using FEA, and the distances between dies, radius of rounding of drawing die, and angle of ironing die are optimized by the DOE method. The results of the optimal process variables are compared with those of the existing DDI process for verifying their effectiveness.

A Probabilistic Structural Design Method of Composite Propulsion System (복합재 추진기관의 확률적 구조 설계 기법)

  • Hwang, Tae-Kyung;Kim, Hyung-Kun;Kim, Seong-Eun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2013
  • This paper describes a probabilistic structural design method of composite propulsion system by comparing safety factor based on average value and allowable value with structural reliability. Generally, the required structural safety factor and reliability of composite pressure vessel are 1.5 and 0.999, respectively. In the case of structural design using average strength, the safety factor which satisfies the required structural reliability depends on the variation of fiber strength. However, the structural design using allowable value shows constant safety factor for the variation of fiber strength, because the allowable value of fiber strength is calculated by considering the variation of fiber strength. Through the analysis results, it was known that the fiber strength is the most important design random variable for the structural design of composite pressure vessel and the variation of fiber strength must be minimized to develop the high performance composite propulsion system.

Design and Output Characteristic Analysis of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 설계 및 출력 특성 해석)

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun;Oh, Seok-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1166-1173
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD. The pressure built in the free volume of 10-cc closed bomb and the opening time of the ignition gas outlet are calculated using one dimensional gas dynamic model which is composed of the ideal gas equation and mass-energy conservation equation. Comparing the test result with model prediction, it is realized that the pressure built in the free volume of closed bomb due to the firing of EMISD, has the efficiency ratio of about 34%.

Extending the Pressure Limit for Turbomolecular Pump up to 133 Pa by using Conductance-Reducer and Measuring the Pressure Differences in Vacuum Chamber (확장한 진공용기 내부의 압력구배 측정)

  • Hong, S.S.;Khan, Wakil;Kang, S.W.;Yun, J.Y.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • A dynamic flow system has been developed which can be used for vacuum gauge calibration by comparison method - a calibration method in which the reading of the gauge under calibration is compared to another calibrated vacuum gauge called the "secondary standard" - and other vacuum-related experiments. The chamber of the calibration system is pumped by a turbomolecular pump (TMP), backed by a scroll pump. As maximum acceptable pressure at the inlet of a TMP is 0.1 Pa, above which the TMP decelerates, the pumping speed decreases and it becomes more difficult to adjust pressure under such circumstances. In the present work, high pressures of up to 133 Pa have been generated in the chamber of the newly developed dynamic flow control system by installing a well-designed conductance-reducer in the by-pass line and, at the same time, operating the TMP in safe mode. In addition, the gas flow and pressure distribution within the chamber have been investigated for the entire pressure range (0.1 Pa ~ 133 Pa) while generating pressure dynamically. Maximum deviations in pressure (1.6 %) were observed at point C on the chamber, which is close to the gas inlet port on the top of the chamber.