• Title/Summary/Keyword: 압력예측

Search Result 1,242, Processing Time 0.033 seconds

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

The Study of Standardization of Temperature Distribution of Interstitial Hyperthermia -In Phantoms and Living cat's brain tissue (Normal Tissue)- (915 MHz 극초단파 자입온열시 온도분포 적정화에 관한 연구 -조직등가물 및 가묘대뇌를 대상으로-)

  • Kyoung Hwan Koh;Cho Chul Koo;Park Young Hwan;Yoo Seong Yul;Kim Jong Hyun;Lee Seung Hoon
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.7-15
    • /
    • 1990
  • The ultimate objective of our experiment is to obtain the precise distribution of temperature in malignant tumors occurring in cerebral parenchyme of human beings when we will carry out interstitial hyperthermia in the near future. To achieve this purpose, first of all, it is necessary to make an attempt at performing interstitial hyperthermia in vivo under the similar condition of human beings. Therefore, we chose cats as materials much alike tissue characteristics of human beings. Moreover, it is also necessary to get the basic data from dynamic phantom in order to standardize and compare results obtained from interstitial hyperthermia carried out in cats. By having performed these experiments we got the following results. 1) On doing interstitial hyperthermia with 915 MHz microwave, the possible treated volume was 2 cm by 2 cm by 6 cm according to $50\%$ specific absorption rate (SAR). 2) The distribution of temperature within non-circulated static phantom was much the same as power density in air, but we observed that the temperature, within $5\~10$ minutes, rose to more higher than $55^{\circ}C$ not measured with Ga-As fiberoptic thermistor which was not impeded by microwave after performing interstitial hyperthermia. 3) Within dynamic phantom in which normal saline was circulating, temperature reached steady state which was maintained for more than 45 minutes through transit period in 5 minutes after starting interstitial hyperthermia. 4) When we interrupted circulation in the dynamic phantom, we observed that temperature rose to the same level as in the static phantom. 5) We could carry out interstitial hyperthermia safely when we used the generating power below 5 watts. Abrupt interruption of circulation caused a rapid increase in temperature. Times taking to rise to maximum $55^{\circ}C$ were 15.2 minutes (SE 0.4),9.7 minutes (SE 0.3), and 6.3 min-utes (SE 0.4) respectively with generating powers of 5,10, and 15 watts.

  • PDF

Chemical Features of Solid Residues Obtained from Supercritical Water Treatment of Populus alba×glandulosa (현사시나무 목분의 초임계수 처리 공정으로부터 유래한 미분해 고형성분의 화학적 특성)

  • Kim, Kwang Ho;Eom, In Yong;Lee, Soo Min;Lee, Oh Kyu;Meier, D.;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.372-380
    • /
    • 2009
  • After supercritical water treatment of poplar wood meals (passed through 60 mesh) for 60s between 325 and $425^{\circ}C$ at the fixed pressure at $220{\pm}10atm$, some solid residues were present in the degradation products. They mainly consisted of chemically modified lignin and fibrous materials. Glucose and xylose were identified as main sugar components of fibrous materials, and the highest ratio of glucose/xylose was achieved at the highest reaction temperature. As reaction temperature was elevated, the portion of fibrous materials decreased in the solid residues, while lignin was further accumulated. The H : G : S ratio of lignin in solid residues was estimated by analytical pyrolysis. Irrespective of reaction temperatures, the H:G:S ratios were not significantly changed in the lignin in solid residues. Compared to poplar milled wood lignin (MWL), it was remarkable that H type monomers were further lowered, while portion of S type monomers increased. The amount of G type monomers were relative stable. In presence of HCl catalyst, lowering H type as well as enhancing S type was further distinguishable. According to the result of nitrobenzene oxidation (NBO), ca. 265 mg of vanillin and syringaldehyde was yielded from poplar MWL as main products. However, remarkably reduced amount of NBO products were determined from solid residues by raising operating temperature as well as by the addition of HCl catalyst. These results strongly indicate that $\beta$-O-4 linkage could be easily cleaved during supercritical water treatment, so that the lignins in the solid residues seem to be condensed phenol polymers, which are mainly formed by carbon-carbon linkages rather than $\beta$-O-4 linkage.

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

Extraction and Characteristics of Purple Sweet Potato Pigment (자색고구마 색소의 추출과 특성)

  • Kim, Seon-Jae;Rhim, Jong-Whan;Lee, Lan-Sook;Lee, Joon-Seol
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.345-351
    • /
    • 1996
  • Studies on extraction and color characteristics of purple sweet potato (PSP) pigment were performed to provide the basic information for the utilization of PSP as a new source of natural food colorant. PSP pigment was extracted well with the polar solvents such as distilled water, ethanol, and methanol. but hardly extracted with the non-polar solvents. Among the tested solvents, 20% ethanol solution containing 0.1% citric acid was found to be the most efficient for extraction of the pigment from PSP. PSP contained high amount of pigment not only in the epidermis but also in the flesh of the potato. The PSP pigment was heat stable even under pretreatments such as autoclaving and blanching of the potato before extraction. The optimum temperature of the extraction for the PSP Pigment was decided to be $30^{\circ}C$ by considering the stability and the rate of extraction. The pigment was markedly influenced by the change of pH. The color of the pigment solution was red at the pH range of $1.0{\sim}3.0$, became blue at $7.0{\sim}8.0$, then turned green at $9.0{\sim}10.0$. A characteristic batho-chromic shift of the pigment solution was observed as the pH of the solution increased.

  • PDF

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF

Mechanical Property Evaluation of Dielectric Thin Films for Flexible Displays using Organic Nano-Support-Layer (유기 나노 보강층을 활용한 유연 디스플레이용 절연막의 기계적 물성 평가)

  • Oh, Seung Jin;Ma, Boo Soo;Yang, Chanhee;Song, Myoung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, rollable and foldable displays are attracting great attention in the flexible display market due to their excellent form factor. To predict and prevent the mechanical failure of the display panels, it is essential to accurately understand the mechanical properties of brittle SiNx thin films, which have been used as an insulating film in flexible displays. In this study, tensile properties of the ~130 nm- and ~320 nm-thick SiNx thin films were successfully measured by coating a ~190 nm-thick organic nano-support-layer (PMMA, PS, P3HT) on the fragile SiNx thin films and stretching the films as a bilayer state. Young's modulus values of the ~130 nm and ~320 nm SiNx thin films fabricated through the controlled chamber pressure and deposition power (A: 1250 mTorr, 450 W/B: 1000 mTorr, 600 W/C: 750 mTorr, 700 W) were calculated as A: 76.6±3.5, B: 85.8±4.6, C: 117.4±6.5 GPa and A: 100.1±12.9, B: 117.9±9.7, C: 159.6 GPa, respectively. As a result, Young's modulus of ~320 nm SiNx thin films fabricated through the same deposition condition increased compared to the ~130 nm SiNx thin films. The tensile testing method using the organic nano-support-layer was effective in the precise measurement of the mechanical properties of the brittle thin films. The method developed in this study can contribute to the robust design of the rollable and foldable displays by enabling quantitative measurement of mechanical properties of fragile thin films for flexible displays.

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test) (유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test))

  • Park, Jung-Wook;Kim, Taehyun;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.670-691
    • /
    • 2018
  • This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.