• Title/Summary/Keyword: 압력손실모델

Search Result 106, Processing Time 0.025 seconds

Performance Prediction of Heat Regenerators with using Spheres: Relation between Heat Transfer and Pressure Drop (구형 축열체를 사용한 축열기의 성능예측: 압력손실과 열전달의 관계)

  • 조한창;조길원;이용국
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of heat of exhaust gaset. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of heat regenerator with spherical particles, was numerically simulated to evaluate the heat transfer and pressure drop and thereby to suggest the parameter for designing heat regenerator. It takes about 7 hours for the steady state of the flow field in regenerator, in which heat absorption of regenerative particle is concurrent with the same magnitude of heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The performance of thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator (cross-sectional area and length) and diameter of regenerative particle. As the gas velocity increases, the heat transfer between gas and particle enhances and with the increase the pressure losses. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled more with the increase of pressure losses.

U-type Cross-Counter Indirect Evaporative Cooler made of Plastic/Paper (U형 직교 대향류 플라스틱/종이 재질 간접증발소자)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.732-739
    • /
    • 2016
  • In Korea, the summer is hot and humid, and much electricity is consumed for air conditioning. Thus, the simultaneous usage of an indirect evaporative cooler and a common air conditioner could reduce the sensible heat and save electricity. This study developed a U-type cross-counter flow indirect evaporative cooler (IEC) made of plastic and paper. The efficiencies were compared with those of a cross-flow IEC. The specimen was $500mm{\times}500mm{\times}1000mm$. the results show that the indirect evaporation efficiencies of the cross-counter flow sample were 6-21% higher than those of the cross-flow sample. The pressure drops of the cross-counter sample were 51-66% higher. Thermal analysis based on the -NTU method predicted the experimental data within 10%. The electrical energy saved by the use of the cross-counter flow IEC was larger than that of the counter flow IEC, and the difference increases with the velocity. However, the the cross-counter IEC is two times larger than the cross-flow IEC, which may increase the material cost and water usage.

Cross Flow Indirect Evaporative Cooler Made of a Plastic Film/Paper Composite (플라스틱 필름/종이 복합 재질의 직교류 간접증발소자)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Indirect evaporative cooling, which utilizes a cooling effect obtained by the evaporation of water, is energy-effective compared to the conventional vapor compression method. It is also eco-friendly, due to the non-usage of CFC refrigerant. In this study, three indirect evaporative cooler samples of the cross flow type(size: $300mm{\times}300mm{\times}300mm$, channel pitch: $5mm{\times}5mm$, $5mm{\times}7mm$, $7mm{\times}7mm$) were made using plastic/paper composites. Tests were conducted to measure indirect evaporative efficiencies and pressure drops. Results showed that the efficiency was the highest for the $5mm{\times}5mm$ sample, owing to the largest surface area. The saved electrical energy was also the greatest for that sample. The pressure drop of the wet channel was larger than that of the dry channel as expected. A theoretical model was proposed, which underestimated both the indirect evaporation efficiency and the pressure drop.

Internal Ballistic Analysis of Solid Propellant Micro-Thruster (초소형 고체 추진제 추력기의 내탄도 성능연구)

  • Yang, June-Seo;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.215-218
    • /
    • 2007
  • Internal Ballistic modeling and performance prediction for solid propellant micro thruster was performed with heat loss to the chamber wall as an important factor of miniaturization. Simple l-D end-burner type thruster and general HTPB-AP type composite propellant were selected for computation model. The results showed that the performance loss with the heat loss to the surroundings becomes larger as the surface-to-volume ratio is increased. In this case, the total impulse was reduced about 3% of the case in adiabatic condition.

  • PDF

Evaluation for Soil Moisture Stabilization and Plant Growth Response in Horizontal Biofiltration System Depending on Wind Speed and Initial Soil Moisture (풍속과 초기 토양수분에 따른 평면형 바이오필터 내 토양수분 안정화 및 식물 생육반응 평가)

  • Choi, Bom;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.27 no.5
    • /
    • pp.546-555
    • /
    • 2014
  • The final aim of this study is to develop a biofiltration system integrated with plant vegetation for improving indoor air quality effectively depending on indoor space and characteristics. However, to approach this final goal, several requirements such as constant pressure drops (PDs) and soil moisture contents (SMCs), which influence the capacity design for a proper ventilation rate of biofiltration system, should be satisfied. Thus, this fundamental experiment was carried out to adjust a proper wind speed and to ensure a stabilization of initial SMCs within biofilter for uniform distribution of SMCs and PDs, and for normal plant growth, especially avoiding root stress by wind. Therefore, we designed horizontal biofliter models and manufactured them, and then calculated the ventilation rate, air residence time, and air-liquid ration based on the biofilter depending on three levels of wind speed (1, 2, and $3cm{\cdot}s^{-1}$). The relative humidity (RH) and PD of the humidified air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of lettuce and duffy fern grown within biofilter were measured depending on the three levels of wind speed. As a result of wind speed test, $3{\cdot}sec^{-1}$ was suitable to keep up a proper RH, SMC, and plant growth. Thus, the next experiment was set up to be two levels of initial SMCs (low and high initial SMC, 18.5 and 28.7%) within each biofilter operated and a non-biofiltered control (initial SMC, 29.7%) on the same wind speed ($3cm{\cdot}sec^{-1}$), and measured on the RH and PD of the air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of Humata tyermani grown within biofilter. This result was similar to the first results on RHs, SMCs, and PDs keeping up with constant levels, and three SMCs did not show any significant difference on plant growth parameters. However, two biofiltered SMCs enhanced dry weights of the plants slightly than non-biofiltered SMC. Thus, the stability of this biofiler system keeping up major physical factors (SMC and PD) deserved to be adopted for designing an advanced integrated biofilter model in the near future.

YGN 3 & 4 Reactor Flow Model Test (영광 3, 4호기 원자로 유동 모델 시험)

  • Lee, Kye-Bock;Im, In-Young;Lee, Byung-Jin;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.340-351
    • /
    • 1991
  • Experimental studies were conducted on a l/5.03 scale reactor flow model of the Yong-gwang Nuclear Units 3 and 4. The purpose of the flow model test was to estimate the hydraulic effect in the reactor vessel due to the relative size difference between the ABB-CE's System 80 and the YGN 3&4 reactors. The flow model was designed according to the principle of similarity. Obtained from the test were the core inlet flow distribution, the core exit pressure deviations, and the segmental and overall pressure losses across the flow path from the reactor vessel inlet to outlet nozzle. These data will be used to provide input data for the core thermal margin analysis and to verify the analytical hydraulic design method.

  • PDF

광진단을 이용한 전자 에너지 분포 함수 변화 감지 알고리즘 개발

  • Park, Seol-Hye;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.131-131
    • /
    • 2010
  • 원자의 여기 및 천이에 의한 플라즈마에서의 빛 방출은 일차적으로 여기를 위한 특정 문턱값 이상의 에너지 공급이 전제 된다. 진공 플라즈마에서 대부분의 에너지 전달 과정은 전자와의 물리적 충돌에 의해 일어나므로 충돌 여기의 결과 발생한 광신호 세기는 전자 에너지 분포에 대한 정보를 내포하고 있다. 전자는 입자들 간의 에너지 전달 매개가 되는 동시에 플라즈마 구성 입자 중 가장 가벼워 빠르게 주변 환경 변화에 응답하여 열평형을 이루므로 EEDF는 플라즈마의 미세한 변동까지도 보여줄 수 있는 인자가 된다. 플라즈마의 열평형 이동에 관한 정보를 광신호로부터 EEDF의 형태로 추출해내기 위해 BEB (Binary - Encounter - Bethe) 모델을 근거로 충돌 반응 단면적을 함수로 나타내어 신호를 분석하였다. EEDF의 꼴을 $f(E)=AEexp(-E^b)$의 임의의 형태로 두고 아르곤의 427nm, 763nm 두 빛의 세기 비를 BEB 모델을 적용하여 전개한 결과 b factor 의 값을 구할 수 있었다. b factor 가 1인 경우는 Maxwellian, 2인 경우는 압력이 높은 조건에서 잦은 충돌에 의한 에너지 손실 때문에 고에너지 전자군이 현격하게 감소된 Druyvesteyn 분포를 의미하므로 광신호에 모델을 적용하여 얻은 b factor의 변화는 EEDF의 형태 자체의 변화가 감지되었음을 보여준다. 실제로 13.56MHz - 1kW ICP 장치에서 아르곤 플라즈마를 발생시켰을 때, 압력이 낮아 Maxwellian 분포가 예상되는 10mTorr 조건에서는 b=1.13, Druyvesteyn 분포에 가까워지는 100mTorr 조건에서는 b=1.502 로 관측되었다.

  • PDF

0차원 모델을 이용한 공정장비 Scale Up 연구

  • Kim, Dong-Hwan;Lee, Yeong-Gwang;Bang, Jin-Yeong;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.518-518
    • /
    • 2012
  • 공정 수율 향상을 위한 웨이퍼의 대면적화는 공정 반응용기의 부피변화를 수반한다. 반응용기의 부피가 커지면 플라즈마 내의 전자와 이온이 손실되는 면적이 증가하게 되고, 그 결과 공정결과에 직접적으로 영향을 미치는 전자온도와 전자밀도가 떨어지게 된다. 이렇게 변화된 플라즈마 변수들을 원래의 값으로 되돌리기 위해서는 인가전력, 실험압력, 유량과 같은 외부변수들이 조절되어야 하는데, 공간 평균 모델(global model) 식을 이용하여 외부변수들의 변량을 계산할 수가 있다. 본 연구에서는 부피가 다른 두 반응용기에서의 플라즈마 변수 진단을 통해서 부피가 커진 환경에서의 전자온도와 전자밀도가 떨어지는 현상을 관찰하였고, 공간 평균 모델로 계산된 외부변수들의 변량을 적용하였을 때 원래의 값으로 가까워 지는 경향을 볼 수가 있었다. 이렇게 같은 공정 결과를 얻기 위한 외부변수들의 변량을 간단히 계산함으로써 대면적화가 되었을 때 외부변수들을 얼마나 변화시켜야 하는지에 대한 일반적인 방향을 제시해 줄 수 있다.

  • PDF

A comparative study of field measurements of the pressure wave with analytical aerodynamic model for the high speed train in tunnels (고속철도 터널내 압력파 측정과 공기압 해석모델에 대한 기초연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Hong, Yoo-Jung;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2015
  • The pressure wave formed by the piston effects of the train proceeds within the tunnel when a train enters the tunnel with a high speed. Depending on the condition of tunnel exit, the compression waves reflect at a open end, change to the expansion waves, transfer to tunnel entrance back. Due to interference in the pressure waves and running train, passengers experience severe pressure fluctuations. And these pressure waves result in energy loss, noise, vibration, as well as in the passengers' ears. In this study, we performed comparison between numerical analysis and field experiments about the characteristics of the pressure waves transport in tunnel that appears when the train enter a tunnel and the variation of pressure penetrating into the train staterooms according to blockage ratio of train. In addition, a comparative study was carried out with the ThermoTun program to examine the applicability of the compressible 1-D model(based on the Method of Characteristics). Furthermore examination for the adequacy of the governing equations analysis based on compressible 1-D numerical model by Baron was examined.

이상류에서의 펌프특성 연구

  • 김주철;김상녕
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.342-349
    • /
    • 1997
  • 국내 원자력발전소의 참조격인 영광 3ㆍ4호기의 RCP를 1/10으로 축소한 모델펌프를 설계ㆍ제작하여 상온, 대기압에서 단상류 펌프특성과 포화상태 근방에서 공동현상 시발 과냉각온도($\Delta$T$_{sub}$ ) 실험을 수행하였다. 단상류 특성은 RCP와 유사하였고, 공동현상 시발 $\Delta$T$_{sub}$ 는 0~5$^{\circ}C$였으며, 압력에 따라 민감하였다. 공동현상의 무차원 변수는 Ca=(equation omitted)로 정의된다. 단상류 펌프특성과 이상류 펌프특성간의 상관관계인 수두손실비 H$^{*}$ (equation omitted)를 기포율($\alpha$)와 유량계수(ø)의 함수로 나타낼 수 있을 것이다.

  • PDF