• Title/Summary/Keyword: 암 유발 유전자

Search Result 67, Processing Time 0.037 seconds

Apoptotic Pathway Induced by Dominant Negative ATM Gene in CT-26 Colon Cancer Cells (CT-26 대장암 세포에서 Dominant Negative ATM 유전자에 의하여 유도되는 세포자멸사의 경로)

  • Lee, Jung Chang;Yi, Ho Keun;Kim, Sun Young;Lee, Dae Yeol;Hwang, Pyoung Han;Park, Jin Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.679-686
    • /
    • 2003
  • Purpose : Ataxia telangiectasia mutated(ATM) is involved in DNA damage responses at different cell cycle checkpoints, and signalling pathways associated with regulation of apoptosis in response to ionizing radiation(IR). However, the signaling pathway that underlies IR-induced apoptosis in ATM cells has remained unknown. The purpose of this study was, therefore, to investigate the apoptotic pathway that underlies IR-induced apoptosis in a CT-26 cells expressing dominant negative ATM (DN-ATM). Methods : We generated a replication-deficient recombinant adenovirus encoding the DN-ATM(Ad/DN-ATM) or control adenovirus encoding no transgene(Ad/GFP) and infected adenovirus to CT-26 cells. After infection, we examined apoptosis and apoptotic pathway by [$^3H$]-thymidine assay, DNA fragmentation, and Western immunoblot analysis. Results : DN-ATM gene served as the creation of AT phenotype in a CT-26 cells as revealed by decreased cell proliferations following IR. In addition, IR-induced apoptosis was regulated through the reduced levels of the anti-apoptotic protein Bcl-2, the increased levels of the apoptotic protein Bax, and the activation of caspase-9, caspase-3, and PARP. Conclusion : These results indicate that the pathway of IR-induced apoptosis in CT-26 cells expressing DN-ATM is mediated by mitochondrial signaling pathway involving the activation of caspase 9, caspase 3, and PARP.

Effect of Radiotherapy on Chromosomal Aberration in Cancer Patients (암환자에서 방사선치료에의한 염색체이상)

  • Chun, Ha-Chung;Lee, Myung-Za;Yoo, Myung-Soo
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 1993
  • We evaluated frequency and types of chromosomal aberrations by ionizing radiation in cancer patients treated with radiotherapy in our institution. Twenty-five patients with various types of carcinomas such as lung, uterine cervix, esophagus, rectum, head and neck and pancreatic cancers were studied immediately before and after external beam radiotherapy. The frequency of aberrant metaphase prior to treatment was $4.93{\%}$, which was higher than that of control group. Especially in lung cancer, the freuqency of aberrant metaphase was three times higher than control group. A comparison of chromosomal abnormalities observed before and after radiotherapy demonstrated that proportion of aberrant rnetaphases was significantly inreased to $22.13{\%}$. Major chromosomal aberrations like structural abnormalities showed remarkalbe increase from 65.45 to $88.45{\%}$ after the treatment. Also the numbers of chromosomal alterations per cell were increased by a factor of 6.5. Aberrations with two or more break points were more prominently increased, compared with aberrations with single break point. The number of chromosomal break points was noted to be higher than expected value in No.1, 3, 8 and 11 chromosomes and lower in No.13, 15, 17 and 21 chromosomes. Based on this study, we believe that the distribution of chromosomal breakage is related with gene and chromosomal rearrangement which could result in the development of cancers.

  • PDF

A Case-control Study for Assessment of Risk Factors of Breast Cancer by the p53 Mutation (p53 유전자 돌연변이에 따른 유방암의 위험 요인 구명을 위한 환자-대조군 연구)

  • Kim, Heon;Ahn, Se-Hyun;Lee, Moo-Song
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.1 s.60
    • /
    • pp.15-26
    • /
    • 1998
  • p53 is the most frequently mutated gene in female breast cancer tissues and the prognosis of breast cancer could be changed by mutation of the gene. This study was performed to examine risk factors for breast cancer subtypes classified by p53 mutation and to investigate the roles of p53 gene mutation in carcinogenesis of breast cancer. The study subjects were 81 breast cancer patients and 121 controls who were matched to cases 1:1 or 1:2 age, residence, education level and menopausal status. All the subjects were interviewed by a well-trained nurse with standardized questionnaire on reproductive factors, and wire asked to fill the self-administrative food frequency questionnaire. p53 gene mutation in the cancer tissue was screened using polymerase chain reaction (PCR)-single strand conformational polymorphism (SSCP) method. Mutation type was identified by direct sequencing of the exon of which mobility shift was observed in SSCP analysis. Mutations were detected in p53 gene of 25 breast cancer tissues. By direct sequencing, base substitutions were found in 20 cancer tissues (10 transition and 10 transversion), and frame shift mutations in 5 (4 insertions and 1 deletion). For the whole cases and controls, risk of breast cancer incidence decreased when the parity increased, and increased when intake amount of total calory, fat, or protein increased. Eat and protein were statistically significant risk factors for breast cancer with p53 mutation. For breast cancer without p53 mutation, protein intake was the only significant dietary factor. These results suggest that causes of p53 positive breast lancer would be different from those of p53 negative cancer, and that dietary factors or related hormonal factors induce mutation of p53, which may be the first step of breast cancer development or a promoter following some unidentified genetic mutations.

  • PDF

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Induction of p53-dependent Apoptosis by Resveratrol in Human Cancer Cells, A549 and SKOV3 (레스베라트롤에 의한 인간 암세포주, A549와 SKOV3의 p53의존적 Apoptosis 유발)

  • Lee, Seul Gi;Nam, Ju-Ock
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.194-200
    • /
    • 2016
  • Resveratrol, a polyphenolic compound present in many fruits and vegetables such as grapes, mulberries, and peanuts, has been reported to have various biological effects. However, the molecular mechanisms underlying resveratrol-induced apoptosis in A549 ovarian cancer cells are not well understood. In this study, we investigated the effect of resveratrol on A549 lung cancer cells (expressing wild-type p53) and compared it with that observed for SKOV3 ovarian cancer cells (expressing null-type p53). Resveratrol significantly inhibited the viability and proliferation of A549 cells in a concentration- and time-dependent manner, compared with its effects on SKOV3 cells. It also induced A549 cell apoptosis, but did not affect anoikis resistance. Furthermore, the viability and proliferation of p53-knockdown A549 cells were unaffected by the presence of resveratrol. Therefore, we demonstrate that the anticancer effect of resveratrol against A549 lung cancer cells is dependent on the presence of functional p53.

Mitochondrial Dysfunction and Cancer (미토콘드리아 기능 이상과 암)

  • Han, Yu-Seon;Jegal, Myeong-Eun;Kim, Yung-Jin
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1034-1046
    • /
    • 2019
  • The mitochondria is the major cellular organelle of energy metabolism for the supply of cellular energy; it also plays an important role in controlling calcium regulation, reactive oxygen species (ROS) production, and apoptosis. Mitochondrial dysfunction causes various diseases, such as neurodegenerative diseases, Lou Gehrig's disease, cardiovascular disease, mental disorders, diabetes, and cancer. Most of the diseases are age-related diseases. In this review, we focus on the roles of mitochondrial dysfunction in cancer. Mitochondrial dysfunction induces carcinogenesis and is found in many cancers. The factors that cause mitochondrial dysfunction differ depending on the types of carcinoma, and those factors could cause cancer malignancy, such as resistance to therapy and metastasis. Mitochondrial dysfunction is caused by a lack of mitochondria, an inability to provide key substances, or a dysfunction in the ATP synthesis machinery. The main factor associated with cancer malignancy is mtDNA depletion. Mitochondrial dysfunction would leads to malignancy through changes in molecular activity or expression, but it is not known in detail which changes lead to cancer malignancy. In order to explore the relationship between mitochondrial dysfunction and cancer malignancy in detail, mitochondria dysfunctional cell lines are constructed using chemical methods such as EtBr treatment or gene editing methods, including shRNA and CRISPR/Cas9. Those mitochondria dysfunctional cell lines are used in the study of various diseases caused by mitochondrial dysfunction, including cancer.

Knowledge based Genetic Algorithm for the Prediction of Peptides binding to HLA alleles common in Koreans (지식기반 유전자알고리즘을 이용한 한국인 빈발 HLA 대립유전자에 대한 결합 펩타이드 예측)

  • Cho, Yeon-Jin;Oh, Heung-Bum;Kim, Hyeon-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.45-52
    • /
    • 2012
  • T cells induce immune responses and thereby eliminate infected micro-organisms when peptides from the microbial proteins are bound to HLAs in the host cell surfaces, It is known that the more stable the binding of peptide to HLA is, the stronger the T cell response gets to remove more effectively the source of infection. Accordingly, if peptides (HLA binder) which can be bound stably to a certain HLA are found, those peptieds are utilized to the development of peptide vaccine to prevent infectious diseases or even to cancer. However, HLA is highly polymorphic so that HLA has a large number of alleles with some frequencies even in one population. Therefore, it is very inefficient to find the peptides stably bound to a number of HLAs by testing random possible peptides for all the various alleles frequent in the population. In order to solve this problem, computational methods have recently been developed to predict peptides which are stably bound to a certain HLA. These methods could markedly decrease the number of candidate peptides to be examined by biological experiments. Accordingly, this paper not only introduces a method of machine learning to predict peptides binding to an HLA, but also suggests a new prediction model so called 'knowledge-based genetic algorithm' that has never been tried for HLA binding peptide prediction. Although based on genetic algorithm (GA). it showed more enhanced performance than GA by incorporating expert knowledge in the process of the algorithm. Furthermore, it could extract rules predicting the binding peptide of the HLA alleles common in Koreans.

The Effects of Rhus Extracts on The Cytotoxicity on Cancer Cells and E6 and E7 Oncogenes of Human Papillomavirus Type 16 (옻 추출물의 세포독성 및 자궁 경부암 바이러스 암 유발인자 E6 와 E7의 작용에 미치는 효과)

  • Cho, Young-Sik;Joung, Ok;Cho, Cheong-Weon;Lee, Kyung-Ae;Shim, Jung-Hyun;Kim, Kwang-Soo;Lee, Hong-Soo;Seung, Ki-Seung;Yoon, Do-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1389-1395
    • /
    • 2000
  • Cervical cancer has been one of the leading causes of female death from cancer worldwide with about 500,000 deaths per year. A strong association between certain human papillomaviruses (HPV types 16 and 18) and cervical cancer has been well known. An extract of natural products, Rhus, has been used to investigate whether this agent has the ability of inhibiting the oncogenes E6 and E7 of HPV type 16. This Rhus inhibited the proliferation of human cervical cancer cell lines (C-33A, SiHa, Caski) and HaCaT keratinocytes in a dose response manner. In vitro binding assay and ELISA showed that Rhus inhibited the in vitro binding of E6 and E6AP which are essential for the binding and degradation of the tumor suppressor p53. In addition, Rhus inhibited the in vitro binding of E7 and Rb which essential tumor suppressor for the control of cell cycle. The level of mRNA for E6 was also decreased by Rhus while that of E7 mRNA was not changed. Our data suggested that Rhus inhibited the oncogenecity of E6 and E7 of HPV 16 type, thus can be used as a putative anti-HPV agent for the treatment of cervical carcinomas by HPV.

  • PDF

Chitosan Derivatives for Target of Specific Tissue in the Body (생체 내 특정 조직의 표적을 위한 키토산 유도체)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.593-602
    • /
    • 2010
  • Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.

Change in the Expression of Occludin, a Gene for Blood-Brain Barrier by Phytoestrogens in Hippocampus of Rat Model for Menopause (폐경기모델 백서 해마에서 식물성 에스트로젠에 의한 뇌-혈액장벽 유전자 occludin 발현의 변화)

  • Kang, Han-Seung;Jung, Kyung-Ah;Kang, Hee-Jung;Kim, Da-Hye;Ahn, Hae-Sun;Om, Ae-Sun;Gye, Myung-Chan
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.166-171
    • /
    • 2006
  • To elucidate the effect of phytoestrogens on the prevention of neurodegenerative disease in postmenopausal women, the expression of occludin which build up the blood-brain barrier was examined in hippocampus following oral administration of estrogen (E2), genistein, diadzein or combination of genistein and diadzein in ovariectomized (OVX) female rats. E2 significantly increased occludin mRNA level in OVX rat hippocampus, suggesting that estrogen is a physiological regulator for structural integrity of the blood-brain barrier in hippocampus. Following isoflavone diet for 4 weeks, there was significant increase in occludin mRNA level in hippocampus, suggesting that isoflavone diet may be effective for protection of structural integrity of blood-brain barrier in hippocampus from degenerative changes in estrogen deficiency.