기술정보의 가치가 높아짐에 따라 해킹을 통한 기술정보를 탈취하려는 해킹 공격이 늘어나고 있으며, 최근 암호화폐 거래소의 해킹은 기존의 기술정보보다 훨씬 현금화가 쉬워 해커들의 주요 공격 대상이 되고 있다. 기술정보의 경우는 기술정보를 탈취한 후 블랙마켓에 판매해야 현금화가 되지만 암호화폐의 경우 해킹 성공 시 바로 현금화가 용이하고 추적이 쉽지 않아 대부분의 해킹 공격은 암호화폐 거래소에 집중되어 있고, 블록체인 기술은 해킹이 불가능하지만, 암호화폐 거래소에서 트레이딩 되는 암호화폐 거래내역은 블록체인에 기록되지 않고 단순한 거래소 내부 거래이기 때문에 내부자가 시세를 조작하여 차액을 남기거나 외부로 유출되는 사례가 빈번히 발생하고 있다. 따라서, 최근에 발생한 암호화폐 거래소의 해킹 공격을 분석하고 해결방안을 제시하여 안전한 암호화폐 거래를 할 수 있도록 제안한다.
최근 암호화폐가 많은 주목을 받음에 따라 암호화폐의 종가 예측 연구들이 활발히 진행되고 있다. 특히 딥 러닝 모델을 적용시켜 예측 성능을 높이려는 연구들이 지속되고 있다. 딥 러닝 모델 중 시계열 데이터에서 높은 예측 성능을 보이는 LSTM (Long Short-Term Memory) 모델이 다각도로 응용되고 있으나 변동성이 큰 암호화폐 종가 데이터에서는 낮은 예측 성능을 보인다. 이를 해결하기 위해 새로운 입력 변수를 찾아내고, 이를 사용하는 종가 예측 연구가 수행되고 있다. 그러나 딥 러닝 기반의 암호화폐 종가 예측에 사용되는 데이터들의 각 입력 변수들이 예측 성능에 미치는 영향력이나 학습에 효율적인 입력 변수들의 조합에 관한 연구 사례가 부족한 실정이다. 따라서 본 논문에서는 Bitcoin과 Ethereum을 포함한 6가지 암호화폐의 최근 동향 자료를 수집하였고, 통계와 딥 러닝을 통해 입력 변수들이 암호화폐 종가 예측에 미치는 영향력을 분석한다. 실험 결과 모든 암호화폐의 종가 예측 성능 평가에서 종가 변동률을 제외한 개장가, 고가, 저가, 거래량, 종가를 조합했을 때 가장 우수한 성능을 보였다.
본 논문은 분산원장기술을 기반으로 하여 암호화폐시장 잠재력지수를 개발하였다. 이 지수의 최대장점은 암호화폐의 개발과 실행 그리고 확산에 이르기까지 암호화폐시장의 전반적인 잠재력을 측정, 비교할 수 있다는 것이다. 본 논문은 암호화폐시장 잠재력지수의 개발과 측정을 위하여 요인분석기법을 이용한 213개 국가의 30개 변수를 분석 비교하였다. 그 결과 암호화폐의 분권화에도 불구하고 그 잠재력은 유럽, 북미, 아시아에 속한 일부 선진국, 그리고 일부 중동국가와 구 소련의 독립국가연합에 집중되어 있음을 밝혀내었다. 이는 암호화폐시장의 발전을 위해서 암호화폐의 확산 이전에 개발과 실행과정이 선행되어야 함을 보여준다.
블록체인은 다양한 기술 응용성을 가지고 있으며 일반 대중은 암호화폐를 통하여 그 기술을 접하고 있다. 그러나 일부 전문가와 일반인들이 블록체인과 암호화폐의 개념을 이해하는데 있어 혼돈이 있어 왔다. 본 논문은 인지 부조화 개념 속에서 혼선의 요소를 파악하고 암호화폐와 블록체인 대해서 보다 명확한 이해를 돕고자 한다.
최근 암호화폐는 블록체인 기술과 더불어 많은 대중들의 관심과 우려의 목소리와 함께 진화하고 있다. 암호화폐의 사용을 고려하는 글로벌 국가들은 자국의 경제보호차원에서 법 규제나 제도 마련 등으로 인해 신중한 태도를 보이며, 다양한 암호화폐들의 동향을 관망하고 있다. 이중 채굴 암호화폐는 암호 연산을 통해 화폐를 취득할 수 있어 인기가 매우 높다. 그러나 높은 사양의 컴퓨팅 자원과 많은 전기에너지의 소모가 지구온난화에 미치는 영향에 대해 고려해 볼 필요가 있다 하겠다. 따라서 본 연구는 암호화폐의 채굴에 따른 전기에너지 소모량과 이산화탄소 배출량의 산출과 관련 자료 및 사례들을 조사하고, 가변 요인들을 알아봄으로써, 향후 암호화폐의 보다 긍정적인 발전 방향의 제시와 다양한 관련 기술개발 등, 4차 산업혁명에 부응하는 연구 자료로 활용될 수 있도록 하고자 한다.
본 연구의 목적은 COVID-19 팬데믹 국면에서 코로나 발생과 확산에 따른 투자자 불안심리가 암호화폐 가격에 영향을 미치는지를 분석하고, 딥러닝 모형에 기반하여 암호화폐의 가격 예측을 실험하는 것이다. 투자자 불안심리는 네이버의 코로나 검색지수와 코로나 확진자 정보를 결합하여 산출하며, 암호화폐 가격과의 그랜저 인과성을 분석하고 딥러닝모형을 이용하여 암호화폐 가격을 예측한다. 실험 결과는 다음과 같다. 첫째, CCI 지표는 비트코인, 이더리움, 라이트코인의 수익률에 유의적인 그랜저 인과성을 보여주었다. 둘째, CCI를 입력변수로 하는 LSTM은 높은 예측성과를 보여주었다. 셋째, 암호화폐 사이의 비교에서는 비트코인의 가격 예측 성과가 가장 높게 나타났다. 본 연구는 코로나 국면에서 네이버 코로나 검색 정보와 암호화폐 가격과의 관련성을 분석한 첫 시도라는 점에서 학술적 의의를 찾을 수 있다. 향후 연구에서는 가격 예측 정확성을 높이기 위하여 다양한 딥러닝 모형으로의 확장 연구가 필요하다.
사용자가 보유하고 있는 토큰은 기존 중앙화된 암호 화폐 거래소를 통해 교환 할 수 있다. 그러나 암호 화폐 거래소를 이용한 토큰 교환은 높은 수수료, 암호 화폐 거래소 해킹 가능성, 해당 거래소 내 등록된 암호 화폐에 대해서만 교환이 가능하다는 문제점이 존재한다. 이더리움 플랫폼에 배포된 스마트 컨트랙트는 블록체인 기반으로 다양한 형태의 계약을 조건이 만족할 시 자동으로 이행한다. 본 연구는 스마트 컨트랙트를 이용하여 기존의 중앙화된 암호 화폐 거래소 기반 토큰 교환 문제점을 해결하면서 이더리움 지갑 내 토큰을 사용자가 원하는 ERC-20 토큰으로 자동 교환해 주는 분산형 토큰 교환 시스템을 제안한다.
기존 화폐가 은행과 같은 신뢰할 수 있는 중앙기관에 의존하는 것과 달리 비트코인을 비롯한 암호화폐는 탈중앙화, 분산화 및 P2P의 특성을 갖는다. 암호화폐에서 거래는 모든 참여자가 확인할 수 있도록 투명하게 분산 저장되며 공개되지만, 이미 저장된 거래 내역의 위변조는 사실상 불가능한 특징이 있다. 흔히 암호화폐도 기존 화폐와 같이 익명성을 갖는 것으로 생각하지만, 암호화폐는 익명성이 아닌 가명성을 제공한다. 이런 이유로 익명성을 보장하기 위한 다양한 연구가 진행되고 있으며, 믹스를 기반으로 한 익명성 보장도 그중 하나이다. 본 논문에서는 믹스를 기반으로 한 기존 익명성 보장 기법을 살펴보고 효율성을 개선한 하이브리드 믹스 기법을 제안한다.
최근 암호화폐 가격 급증과 동시에 암호화폐 채굴과 관련된 사회적인 이슈가 지속 발생하고 있다. 특히, 암호화폐는 암호연산을 통해 취득할 수 있어서 컴퓨터만 있다면 누구나 쉽게 채굴을 시도할 수 있으며, Bitcoin, Ethereum 등 주요 암호화폐들의 자산가치가 증가함에 따라 대중들의 관심은 증가하고 있다. 또한, 높은 사양의 컴퓨터를 소유하고 있는 개인이 가정이나 회사 등 다양한 장소에서 암호화폐를 채굴하는 사례가 늘어나고 있다. 일부 채굴자들은 많은 전기에너지를 소모하는 컴퓨터의 발열 문제로 가정이 아닌 회사나 공공장소 등에서 채굴하여 개인의 도덕적 문제뿐만 아니라 기업에서도 여러 가지 문제들을 발생시키고 있다. 따라서, 본 연구는 암호화폐를 채굴한 컴퓨터들의 윈도우 아티팩트를 이용하여 채굴을 시도한 흔적들에 대해서 증거를 획득하는 기술에 관해 연구한다. 이를 통해 기업의 보안 강화를 위해 내부감사에 활용할 수 있도록 기대한다.
양자 알고리즘인 그루버나 쇼어 알고리즘에 의해 현존하는 암호 체계들이 무너질 수 있으며, 블록체인 네트워크를 기반으로 타원곡선 암호 및 타원곡선 전자서명을 사용하는 암호화폐의 안전성 또한 위협받고 있다. 따라서 암호화폐에도 양자 컴퓨터에 대한 대응책이 필요하다. 본 논문에서는 시계열 예측에 적합한 순환형 신경망을 활용하여 양자 저항성을 가지는 암호화폐들의 가격을 예측하고 분석한다. 데이터가 부족하였으나 학습 결과 0.005 이하의 손실을 달성하였으며, 최근 15일의 데이터를 통해 예측한 결과, 모두 소폭 상승할 것으로 나타났다. 향후에는 더 많은 데이터를 통해 더 정확한 예측이 가능한 신경망을 설계하고 다양한 양자 관련 이슈들을 참고하여 분석을 수행하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.