• Title/Summary/Keyword: 암석분류능력

Search Result 7, Processing Time 0.023 seconds

The Classification Ability with Naked Eyes According to the Understanding Level about Rocks of Pre-service Science Teachers (예비 과학교사들의 암석에 대한 이해수준에 따른 육안분류 능력)

  • Park, Kyeong-Jin;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.467-483
    • /
    • 2014
  • This study aimed to investigate the classification ability with naked eyes according to the understanding level about rocks of pre-service science teachers. We developed a questionnaire concerning misconception about minerals and rocks. The participants were 132 pre-service science teachers. Data were analyzed using Rasch model. Participants were divided into a master group and a novice group according to their understanding level. Seventeen rocks samples (6 igneous, 5 sedimentary, and 6 metamorphic rocks) were presented to pre-service science teachers to examine their classification ability, and they classified the rocks according to the criteria we provided. The study revealed three major findings. First, the pre-service science teachers mainly classified rocks according to textures, color, and grain size. Second, while they relatively easily classified igneous rocks, participants were confused when distinguishing sedimentary and metamorphic rocks from one another by using the same classification criteria. On the other hand, the understanding level of rocks has shown a statistically significant correlation with the classification ability in terms of the formation mechanism of rocks, whereas there was no statistically significant relationship found with determination of correct name of rocks. However, this study found that there was a statistically significant relationship between the classification ability with regard to formation mechanism of rocks and the determination of correct name of rocks.

The Classifying Ability of the Igneous Rocks with Naked Eyes for Preservice Science Teachers (예비과학교사들의 화성암 육안분류 능력)

  • Moon Byoung Chan;Jeong Jin-Woo;Chung Chull Hwan
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.630-639
    • /
    • 2005
  • The purpose of this study was to investigate the classifying ability of the igneous rocks with the naked eye for 36 preservice science teachers. For this, we selected six specimens of igneous rocks that consisted of rhyolite, andesite, basalt, granite, diorite, and gabbro, and performed the questionnaire with them. Preservice science teachers needed the average of 3 tools to classify the rocks. Most of the selected tools were loupe, streak plate, hammer and Mohs’ hardness scale. Many preservice science teachers selected basalt and granite samples to classify igneous rocks among 6 kinds of the rocks which were exhibited. However, the results of the identification with the naked eye showed that the right answer rate was significantly different based on what rock sample had been selected. Nobody gave the right answer among 10 students who chose the rhyolite sample, but all of 36 students who picked the basalt sample answered correctly. And $62\%$ of 8 students who chose the andesite sample, 62% of 32 student choosing granite, $7\%$ of 13 students choosing diorite and $44\%$ of 9 students choosing gabbro were correctly answered. In identifying igneous rock samples with the naked eye, most subjects relied on vesicular texture to basalt, and they used textural, color and empirical characters to granite. But, some felt more or less difficulty to distinguish between intermediate and light colors and to recognize porphyry.

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Cut Slopes (건설현장 절취사면의 산성암반배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu;Kim, Tack-Hyun;Ko, Kyung-Seok;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.91-99
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur mineral pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this paper the generation characteristics and the prediction of ARD of various cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Fourteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

Evaluation for Predicting Acid-forming Potential of Domestic Forest Aggregate Samples (국내 산림골재 시료의 산성암석배수 발생 가능성 예측 평가)

  • Yim, Gil-Jae;Jang, Jeong-Yun;Cho, Dong-Wan;Ji, Sangwoo;Cheong, Young-Wook;Hong, Sei-Sun;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.561-572
    • /
    • 2021
  • Aggregate collection is taking place in many areas in Korea, resulting in large cut slopes or large amounts of cut rocks. If the development site for such aggregate collection is a stratum accompanied by sulfide minerals, Acid Rock Drainage (ARD) may occur, which may cause environmental pollution in the development site and surrounding areas. As a result of the study on forest aggregate samples, most of the samples were classified as acid-forming potential samples, and among them, some samples from Gwangju, Goyang, and Sokcho were classified as potential acid-generating samples. This can be expected to affect the quality of aggregates when a large amount of aggregate is used in the future. Therefore, it is judged that these forest aggregates need to be managed when they are used. By predicting the occurrence of ARD through the acid-generating ability test, it is expected that economic losses that may occur in the future can be reduced, and it is judged that the problem of surrounding environmental pollution can be further alleviated.

Physical and Chemical Characteristics of Pinkish Granite Core in the Mungyeong Area (문경지역 담홍색 화강암 코아의 물리적 및 화학적 특성)

  • 윤현수
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.234-240
    • /
    • 1994
  • The Wongyeong site, one of massive pinkish granite quarries in the Mungyeong area, was drilled to study the physical and chemical properties following the rock classification from fresh rock to highly, moderately and slightly weathered one. The physical properties such as specific gravity, absorption ratio, porosity and compressive strength were tested from the core samples. Specific gravity and absorption ratio are 2.37-2.64 and 0.27-1.87% respectively, while porosity and compressive strength are 0.70-4.38% and 110- 1, 695 kg/$cm^2$. With increased weathering, absorption ratio vs. porosity shows a positive correlation. The absorption ratio is in reverse proportion to compressive strength. Toward the surface in the drilled core, the $SiO_2$, CaO and $K_2O$ contents slightly decrease, but the $Al_2O_3$+FeO(t) contents increase by the enrichment of residual clay in the weathered rock.

  • PDF

Geochemistry of Granites in the Southern Gimcheon Area of Korea (김천남부에 분포하는 화강암류의 지구화학)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The granites in the southern Gimcheon area can be divided into two parts, marginal hornblende biotite granodiorite (Mgd) and central biotite granodiorite to granite (Cgd). Mgd and Cgd are gray in color and display gradational contact relations and are mainly composed of coarse-grained and medium-grained rocks, respectively. Mgd has more frequent and larger mafic enclaves than Cgd, and the two granites partly show parallel foliation at thire contact with gneisses. From representative samples of the granites, K-Ar biotite ages of 197∼207 Ma were obtained. Considering the blocking temperature of biotite, it is suggested that the emplacement age of the granitic magma was probably late Triassic. The anorthite contents of plagioclases in Mgd display less variation than those of Cgd, indicating that Mgd crystallized within a narrow range of temperatures. In the Al$\_$total/-Mg diagram, the biotites from the granites plot within the subalkaline field, and the smooth slope indicates differentiation from a single magma. All amphiboles from the granites belong to magnesio-hornblende. The linear trends of major oxides, AFM and Ba-Sr-Rb indicate that Mgd and Cgd were fractionally differentiated from a single granitic magma body crystallizing from the margin inwards. The relations of modal (Qz+Af) vs. Op, K$_2$O vs. Na$_2$O, Fe$_2$ $O_3$ vs. FeO, Fe$\^$+3/(Fe$\^$+3/+Fe$\^$+2/) and K/Rb vs. Rb/Sr show that they belong to I-type and magnetite-series granitic rocks developed by the progressive melting products of fixed sources. REE data, normalized to chondrite value, have trends of enriched LREE and depleted HREE together with weakly negative Eu anomalies.

Relationships between Types of Emotional Words and Abilities of Science-Knowledge Generation in Students' Scientific Observation and Rule-Discovery (과학적 관찰과 규칙성 발견 활동에서 나타나는 감성단어 유형과 과학 지식 생성력과의 관계)

  • Kwon, Yong-Ju;Shin, Dong-Hoon;Han, Hye-Young;Park, Yun-Bok
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1106-1117
    • /
    • 2004
  • The purposes of this study were to analyze types of scientific emotion word and to investigate the relationship between the ISE(Index of Scientific Emotion) and the ability of science-knowledge generation in subjects' scientific observation and rule-discovery. The subjects were asked to perform four scientific tasks. The tasks were developed that are suitable for scientific observation and rule-discovery. In performing tasks, the subjects were asked to describe their generated science-knowledge and scientific emotion through self-report questionnaire, performing each task. The strength of their scientific emotion was also measured using adjective emoticon check lists. In subjects' scientific observing, they showed 33.3% of interest emotion which was the biggest, 15.0% of acceptance emotion, and 11.3% of love emotion, respectively. In scientific rule-discovering, types of emotion were shown as 23.8% of interest, 21.5% of disgust, and 10.8% of acceptance, respectively. In addition, ability of science-knowledge generation was significantly correlated to ISE.