• Title/Summary/Keyword: 암반 등급

Search Result 135, Processing Time 0.027 seconds

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Variation of Geomechanical Characteristics of Granite and Orthogneiss in Wonju Area due to Accelerated Artificial Chemical Weathering Tests (강원도 원주일대에 분포하는 화강암 및 화강편마암의 화학풍화실험에 의한 물성 변화 연구)

  • Woo, Ik;Um, Jeong-Gi;Park, Hyuck-Jin
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.213-225
    • /
    • 2009
  • The purpose of the study is to evaluate the effects of chemical weathering on the granite and orthogneiss in Wonju area based on accelerated artificial chemical weathering. The rock samples were scrutinized the variation of index properties and ion exchanges caused by artificial chemical weathering which was implemented with leaching test for 170 days using double soxhlet extractor. The differential weathering and decrease of p wave velocity were obtained by weathering process without significant changes of porosity. In case of granite samples, the uniaxial compression strength was reduced by 20% and 16% for the F-grade and SW-grade, respectively. For MW-grade granite, however, was not able to examine the effect of strength reduction due to lack of sample number. Also, for orthogneiss, it is difficult to compare the values of uniaxial compressive strength between before and after the test because of its strong anisotropy.

Evaluation of Support Performance of Fiber-Net Integrated Shotcrete in Tunnel Support System (숏크리트용 섬유 그물망 일체형 터널 지보시스템의 지보 성능 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.545-552
    • /
    • 2020
  • This study evaluated the support performance of fiber-net integrated shotcrete in tunnel support system developed for the purpose of improving constructability and stability while fully performing its mechanical performance as a tunnel support materials by four-point bending test, two-dimensional numerical analysis, and cross-sectional analysis. As a result of evaluating the flexural performance through a four-point bending test, in the case of fiber-net reinforced shotcrete, the tensile performance of fiber-net resulted in a continuous increase in load after crack occurrence, unlike steel fiber reinforced shotcrete. Also, the results of the tunnel cross-sectional structure analysis for ground conditions and the cross-sectional analysis of fiber-net and steel fiber reinforced shotcrete showed that sufficient support performance can be exhibited even if the thickness of fiber-net reinforced shotcrete was reduced compared to the previous one. Additionally, through these results, the support pattern of fiber-net integrated shotcrete in tunnel support system, which can be applied efficiently to the construction sections requiring higher stability among the rock mass class III, was proposed.

Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone (터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구)

  • Min Kyoung-Nam;Lim Kwang-Su;Jang Chang-Sik;Lim Dae-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.111-118
    • /
    • 2005
  • The area of investigation belongs to Okchon metamorphic zone and the fault fractured zone runs parallel to the tunnel direction. It causes the independent decline of tunnel face and the slackness of the tunnel surrounding base so, after all, the severe displacement has occurred within the tunnel. Accordingly, the TSP(Tunnel Seismic Prediction) survey has been performed to investigate the extent of fault fractured zone and to analize its characteristics. Also, we have analized the behavior causes by performing the tunnel face mapping and drilling investigation, and confirmed the position and scale of geological anomaly area and front fractured zone which influences tunnel excavation and supporting. Collected data analyzed ground layer condition through 3 dimensional modeling. Several variables included in the modeling were analyzed by geostastistics. The analysis of the modeling data shows that the belt of weathering by fault fractured zone is developing on the basis of the right side of tunnel and that is decreasing to the left side. The fault fractured zone was confirmed that it has strike, $N0\~5^{\circ}E$ dip NW, and it is consisted of large-scale fractured zone including several anomalies. The severe displacement in tunnel is probably caused by asymmetrical load that n generated by the crossing of discontinuity and the rock strength imbalance of tunnel's both side by fault fractured zone, and judge that need tunnel reinforcement method of grouting etc.

Analysis of Weathering Sensitivity by Swelling of Domestic Highway Sites (국내 고속도로현장의 스웰링에 의한 풍화민감도 분석)

  • Jang, Seokmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2022
  • This study aims to observe the swelling representative rocks in Korea and to suggest improvements in the use of test methods and prior analysis in relation to the weathering of rocks. The swelling test and analysis were performed on the drilling cores obtained for the ground investigation at the domestic highway construction site. For the method of determining the absorption expansion index of rocks, the method proposed in "Standard Methods for Sample Collection and Specimen Preparation" of ISRM and Korean Rock Engineers Standard Rock Test Method was used. The specimen for the measurement of the expansion displacement was cylindrical with a height of 10 cm and a diameter of 5 cm. The existing swelling analysis method evaluates the sensitivity to weathering by using the maximum expansion displacement, but since the classification by bedrock grade is unclear, it is reasonable to use the rate of change of the expansion displacement according to the immersion time. It is necessary to conduct an experiment to distinguish between weathering and fault deterioration. In addition, long-term weathering prediction technology for each cancer type is needed through the expansion displacement analysis of the chemical weathering stage.

An Engineering Survey and Proposal on Preservation of Petrograms at Daegok Brook (대곡천 암각화군의 공학적 진단과 보존방안의 제안)

  • Cho, Hong-Jae;Moon, Jong-Kyu
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.194-206
    • /
    • 2010
  • It has been presumed that Bangudae-petrogram and Chunjonri-petrogram have been sculptured along the river Taewha in the prehistoric age. These petrograms have been sculptured on shale, the sedimentary rock of cretaceous in Mesozoic era and have been weathered by wind and rain for around 6000 years, resulting in weathering grade 5. Specially, Bangudae-petrogram has been in submerged zone in Sayeon dam for 168 days a year and the submersion has been repeated for 45 years up to date. This paper adopts an engineering approach to these petrograms' properties and discuss how to enhance strengths of petrograms themselves and stop weathering.

Rock Mass Classification by Surface-borehole Hybrid Array Seismic Refraction Tomography in the Region of Serious Electrical Noises (전기적 잡음이 심한 지역에서 지표-시추공 복합배열 탄성파탐사에 의한 암반등급 산정)

  • Kim Ye Ryun;Sha Sang Ho;Nam Soon Sung;Jo Cheol Hyun;Cha Young Ho;Park Jong Bum;Shin Kyung Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.610-614
    • /
    • 2005
  • Rock mass classification by using electrical resistivity tomography(ERT) method is widely performed for the determination of rock support type in tunnel design. In the region of high electrical noise level, however, the result of the ERT will have many erroneous features. In this study, the back ground electrical noise had been measured to find out the reason why the results of ERT in this area did not agree to the expected geology confirmed by boreholes. In order to overcome this limitation of ERT, a hybrid surface-borehole array seismic refraction tomography had been followed. Using this technique, we could get P-wave velocity section including the depth level of tunnel. The comparison of the P-wave velocity and RMR shows fairly good statistical relationship to make it possible to set up the rock mass classification for the entire tunnel line.

  • PDF

The geophysical survey and rock classification suitable for the design of a tunnel in urban area passing underneath the Gyeongbu Line(Railload) (경부선 직하부를 나란히 통과하는 도심지 터널에 있어서 지표물리탐사 및 암반등급 평가 사례 연구)

  • Lee Kun;Kim Eun-Duk;Sha Sang-Ho;Cha Young-Ho;Kim Tae-Young;Jung Doo-Suk;Hwang Nak-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.673-679
    • /
    • 2005
  • Urban conditions such as underground facilities and ambient noises due to cultural activity restrict the application of conventional geophysical techniques in general. We used the linear array microtremor technique which uses these noises as strong energy source. The result parameter of the survey is shear wave velocity profile which had been applied as an fundamental information for the determination of the rock support type in tunnel design. This study was the first case in Korea which utilized a surface geophysical technique yielding successful result in urban area especially under the existing rail ways. The quantitative relation between the shear wave velocity from this method and the rock mass rating(RMR) determined from the inspection of the cores recovered from the same boreholes showed high statistical relationship. These correlations were then used to relate the shear-wave velocity to RMR along the entire profile.

  • PDF

A Study on the Correlation of Resistivity and Rock Quality (전기비저항과 암반등급의 상관관계에 대한 고찰)

  • 권형석;신중호;황세호;백환조;김기석;김종수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.81-88
    • /
    • 2001
  • Electrical resistivity is one of physical property of the earth and measured by electrical resistivity survey, electrical resistivity logging and laboratory test. Recently, electrical resistivity is widely used in determination of rock quality in road and railway tunnel design. To get more reliable rock quality data from electrical resistivity, it needs a lot of test and study on correlation of resistivity and rock quality. Firstly, we did rock property test in laboratory, such as uniaxial compressive strength(UCS), p wave velocity, Young's modulus and electrical resistivity. We correlate each test results and we found out that electrical resistivity has exponentially related to UCS and P wave velocity and linearly related to Young's modulus. And we accomplished electrical resistivity survey in field site and carried out electrical resistivity logging at in-situ area. Also we peformed rock classification, such as RQD, RMR and Q-system and we correlate electrical resistivity to rock classification results. We found out that electrical resistivity logging data are highly correlate to RQD, Q and RMR. Also we found out that electrical resistivity survey data are lower than electrical resistivity logging data when there are faults or fractures. And it cause electrical resistivity survey data to lowly correlate to RQD, Q and RMR.

  • PDF

A Case Study for Rock Mass Classification using Geophysical Exploration (물리탐사에 의한 터널구간의 암반등급 산정)

  • 김기석;권형석;김종훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.119-137
    • /
    • 2003
  • Electrical resistivity is one of physical property of the earth and measured by electrical resistivity survey, electrical resistivity logging and laboratory test. Recently, electrical resistivity Is widely used In determination of rock quality in road and railway tunnel design. To get more reliable rock quality data from electrical resistivity, it needs a lot of test and study on correlation of resistivity and rock quality. Firstly, we did rock property test In laboratory, such as uniaxial compressive strength(UCS), P wave velocity, Young's modulus and electrical resistivity. We correlate each test results and we found out that electrical resistivity has exponentially related to UCS and P wave velocity and linearly related to Young's modulus. And we accomplished electrical resistivity survey in field site and carried out electrical resistivity togging at In-situ area. Also we performed rock classification, such as RQD, RMR and Q-system and we correlate electrical resistivity to rock classification results. We found out that electrical resistivity logging data are highly correlate to RQD, Q and RMR. Also we found out that electrical resistivity survey data are lower than electrical resistivity logging data when there are faults or fractures. And it cause electrical resistivity survey data to lowly correlate to RQD, Q and RMR.

  • PDF