• Title/Summary/Keyword: 암반터널

Search Result 1,988, Processing Time 0.021 seconds

절리암반 중에 굴착된 터널의 거동평가를 위한 수치 해석적 연구

  • Kang, Yong;Yoo, Gwang-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.97-108
    • /
    • 2001
  • 절리가 발달한 암반의 거동평가를 위한 해석적 방법은 연속체 모델과 불연속체 모델을 사용하는 방법으로 대별할 수 있으며, 연속체 모델을 사용할 경우에는 유한요소법이나 유한차분법을 이용하는 방법이 주종을 이루고 있다. 불연속체 모델은 개별 블록들의 움직임을 일일이 계산하므로 매우 매력적인 방법이지만 현재의 지반조사 기술수준으로는 지반내의 절리발달사항을 정확히 파악하기가 매우 어려우며, 컴퓨터의 계산용량이 너무 과다해지는 단점이 있다. 따라서, 불연속면을 포함한 암반을 연속체로 가정한 편재절리 모델(ubiquitous joint model)을 이용한 연구가 요구된다. 한편, 터널의 경우는 사면의 경우와는 달리 파괴면의 형상을 사전에 가정하기 어렵기 때문에 한계평형법에 기초한 해석법 등을 적용하여 안전율을 구하기가 곤란하다. 이러한 이유에서 터널을 대상으로 한 수치해석은 안전율을 구하기보다는 안정성을 평가하는 데만 제한적으로 사용되어 왔다. 본 논문에서는 편재절리모델을 이용한 절리암반터널의 거동 평가기법과 수치해석에 의해 터널의 안전율을 구하는 방법을 제시하는 데에 그 목적이 있다. 이를 위해 터널의 안전율 구하는 방법을 강도감소기법에 근거하여 제시하였다.

  • PDF

고경사 절리 암반에서의 터널 굴착

  • 이영남;김대영;서영호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.132-138
    • /
    • 2001
  • 홍콩 HMRT(Hongkong Mass Railway Tunnel) 지하철 공사현장에서는 터널굴착시 나타난 고경사절리로 인해 상당한 여굴이 발생하였다. 이에 대한 원인을 규명하기 위하여 각 터널별로 발생한 여굴의 양과 위치 등을 조사하고 이를 입찰설계단계에서 이루어진 시추공조사와 굴착단계에서의 막장검측에 의한 지질조건과 서로 비교, 분석하였다. 터널굴착에서 발생하는 여굴은 막장의 고경사 절리의 분포와 방향에 의해 영향을 받았으며, 암반조건 RQD, Q'와도 밀접한 관계를 가지는 것으로 나타났다. 본 현장의 분석에 따르면 터널설계시 고경사절리의 존재여부 및 분포, 방향성 등을 면밀히 조사하고 해석하여 사전에 여굴의 발생 가능성을 확인하는 것이 필요하다.

  • PDF

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

A Study of Rockbursts Within a Deep Mountain TBM Tunnel (산악 TBM 터널에서 발생한 암반파열 현상에 대한 연구)

  • Lee, Seong-Min;Park, Boo-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.39-47
    • /
    • 2003
  • Rockbursts are mainly caused by a sudden release or the stored strain energy in the rock mass. They have been the major hazard in deep hard rock mines but rarely occur in tunnels. Due to the short history and limited information on rockbursts, the topic has rarely been studied in Korea. Some cases of rockbursts, however, have been reported during construction of a mountain tunnel for waterway. This study focuses on analyzing data on rockbursts obtained from a TBM (Tunnel Boring Machine) tunnel and suggests methods for a comprehensive understanding on rockbursts. From the analysis of the field data of rockbursts, it was found that most rockbursts mainly occurred at the section between the tunnel face and the TBM operating room, and the rock bursting phenomena lasted up to 20 days after excavation in certain areas. The data also show that the bursting spots are located all around the tunnel surface including the face, the wall, and the roof, The maximum size of bursting spots is usually less than 100cm. This study also suggests new scale systems of brittleness and uniaxial compressive strength to evaluate the possible tendency for a rockburst. These systems are scaled based on the scale system of strain energy density. In addition, with these scale systems, this research shows that there are potentially higher tendencies for rockbursts in this specific tunnel. Moreover this research suggests that properties of rock and rock mass, RMR (Rock Mass Rating) value, tunneling method, excavating speed, and depth of tunnel have a strong correlation with rockbursts.

Applicability of the single shell tunnel in Korea from the economic evaluation (경제성 분석에 의한 싱글쉘 터널의 국내 적용성 검토 연구)

  • Kim, Hak-Joon;Shin, Hyu-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.167-175
    • /
    • 2008
  • The construction cost for the single shell tunnel is cheaper than that of the double shell tunnel according to the case studies performed in several domestic and foreign tunnels. However, the economic advantage of single shell tunnel drops drastically as the condition of the rock mass deteriorates. Therefore, the single shell tunnelling method should be applied to the good rock mass conditions. The application of the single shell tunnelling method to tunnels in Korea should be determined considering the ratio between the good rock and poor rock masses along the tunnel section. The use of the single shell tunnel is expected to offend depending on the cheap supply of high quality shotcrets and rock bolts developed for single shell tunnels.

  • PDF

Prediction of Rock Mass Strength Ahead of Tunnel Face Using Hydraulic Drilling Data (천공데이터를 이용한 터널 굴진면 전방 암반강도 예측)

  • Kim, Kwang-Yeom;Kim, Sung-Kwon;Kim, Chang-Yong;Kim, Kwang-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.479-489
    • /
    • 2009
  • Appropriate investigation of ground condition near excavation face in tunnelling is an inevitable process for safe and economical construction. In this study mechanical parameters from drilling process for blasting were investigated for the purpose of predicting the ground condition, especially rock mass strength, ahead of tunnel face. Rock mass strength is one of the most important factors for classification of rock mass and making a decision of support type in underground construction. Several rock specimens which are considered homogeneous and having different strength values respectively were tested by hydraulic drill machines generally used. As a result, penetration rate is fairly related with rock mass strength among drilling parameters. It is also found that penetration rate increases along with the higher impact pressure even under same rock strength condition. It is finally suggested that new prediction method for rock mass strength using percussive pressure and penetration rate during drilling work can be utilized well in construction site.

Tunnel Stability Assessment Considering Rock Damage from Blasting Near to Excavation Line (굴착선 주변공 발파의 암반손상을 고려한 터널 안정성 검토)

  • 이인모;윤현진;이형주;이상돈;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.167-178
    • /
    • 2003
  • Damage and overbreak of the remaining rock induced by blasting can not be avoided during tunnel construction which may result in either short-term or long-term tunnel instability. Therefore, in this paper, a methodology to take into account the effect of blast-induced damage in tunnel stability assessment is proposed. Dynamic numerical analysis was executed to evaluate damage and overbreak of the remaining rock for the most common blasting pattern in road tunnel. Rock damage was quantified by utilizing the damage variable factor which is adopted proposed in continuum damage mechanics. The damaged rock stiffness and the damaged failure criteria are used to consider the effect of rock damage in tunnel stability analysis. The damaged geological strength index of the damaged rock was newly proposed from the relationship between deformation modulus and geological strength index. Also the Hoek-Brown failure criteria of the damaged rock was obtained using the damaged geological strength index. Analysing the tunnel stability with the consideration of the blast-induced damage of remaining rock, it was found that the extend of plastic zone and deformation increased compared to the undamaged rock. Therefore the short-term or long-term tunnel stability will be threatened when the rock damage from blasting is ignored in the tunnel stability analysis.

Stability Analysis of Rock Pillar in the Diverging Area of Road Tunnel (도로터널 분기부 암반 필라의 안정성 평가)

  • Kang, Jae-Gi;Yang, Hyung-Sik;Jang, Sun-Jong
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.344-353
    • /
    • 2014
  • In this study, the behavior of rock pillar in the diverging area of road tunnel was assessed by using a three dimensional numerical analysis. Based on parameters affecting the behavior of rock pillar, different safety factors according to pillar width, depth and rock conditions were evaluated. It turned out that as the pillar width increases, the change curve of safety factors in accordance with depth and rock conditions shows more of the nonlinear behavior. By the assessment of the minimum safety factor, a safety factor chart on the behavior of rock pillar in the diverging area of road tunnel was suggested.

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

Estimation of Elastic Modulus in Rock Mass for Assessing Displacment in Rock Tunnel (암반터널에서의 변위파악을 위한 암반 탄성계수 추정)

  • Son, Moorak;Li, Sudan;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.83-92
    • /
    • 2011
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is used to estimate the displacement due to tunnel excavation. Nevertheless, the study to estimate the elastic modulus, which condisiders the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at providing the method to estimate the elastic modulus of rockmass in the various rock and joint conditons and the results grasped from the study. For this purpose, the 2D discrete numerical analysis will be carried out and the displacements due to tunnel excavation will be investigated with the consideration of rock and joint conditions. Then the displacement results will be used to estimate the elastic modulus of rockmass in which rock and joint conditions are considered with the utilization of the elastic theory of circular tunnel. The results of elastic modulus, which considers the conditions of various rock and joint, would be expected to have a great practical use in field.