• Title/Summary/Keyword: 암반균열

Search Result 373, Processing Time 0.02 seconds

Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model (방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.55-64
    • /
    • 2006
  • It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.

A Study on the Development of the Rock Blastability Classification and the Methods for Minimizing Overbreak in Tunnel (터널 굴착면 여굴 최소화를 위한 발파암 분류(안) 및 공법 개발 연구)

  • 이태노;김동현;서영화
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.25-38
    • /
    • 2002
  • 터널 굴착선 여굴(Overbreak)은 발파공법에 의한 괄착 중에 필연적으로 발생하는 현상으로서 숏크리트, 라이닝 등의 보강비 추가 발생과 버력 처리량의 증대로 공기 및 공사비를 증가시키는 주요한 요인으로 작용한다. 또한 터널 굴착선 암반의 손상으로 균열층이 형성되거나 부석이 발생하여 안전문제를 야기시키기도 한다. 이러한 여굴 발생은 천공오차, 발파패턴의 오류, 잘못된 화약선정, 불규칙한 암반 특성 등에 그 원인이 있으나, 지금까지 터널 여굴은 천공 및 발파기술에 의해 좌우된다라는 인식이 대부분이었다. 그러나 여굴 발생에 중요한 원인으로 터널 굴착선 암반의 특성과 이에 적합한 발파패턴 및 화약류를 들 수 있다. 본 연구는 여굴 발생에 영향을 미치는 암반상태를 파악하기 위해서 터널 굴착선 주변암반의 균열정도, 강도, 불연속면의 간격, 방향, 간극, 충전물 상태 등의 6가지 요소를 이용하여 암반을 분류하는 발파암 분류법(BI)을 새로 제안하였고, 이 분류에 따라 외곽 공의 간격과 장약밀도를 달리 하는 발파패턴을 정립하였다. 또한 화약의 순폭도와 Air Deck 효과를 이용하여 장약밀도를 조절할 수 있는 N.D.C(New Deck Charge) 발파공법을 개발함으로써 여굴을 최소화할 수 있었다.

A Proposal of Systematic Hydro-Environmental Impact Assessment of Tunnel Construction in Fractured Rock Masses (균열 암반 내 터널 설계 시 체계적인 지하수 환경 영향 평가 시스템 제안)

  • Kim Hyoung-Soo;Yoon Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.195-202
    • /
    • 2006
  • Hydro-environmental impact assessments (HEIA) in tunnel constructions have been performed through various methods including preliminary investigations, field tests, numerical simulations, and monitoring. Specially, it is very important to evaluate quantitatively groundwater inflows into tunnels as well as drawdowns caused by tunnelling. Obvious definitions between porous and fractured rock media in hvdrogeologic properties of study regions must be needed to execute HEIA for rational tunnel construction in fractured bedrocks. In this paper, we propose a HEIA on tunnel constructions in fractured rocks media resulted from various hydrogeologic field tests and numerical models on given regions and determination of systematic order, i.e. the technical road map (TRM) of HEIA. These systematic HEIAs are expected to be usefully applied to base data in tunnel construction in fractured rock media.

Estimating and Analyzing the Appropriate Pressing Force of the Rock Cutting Splitting Method (암반 커팅 스플리팅 공법의 적정 압입력 추산을 위한 분석해)

  • Lee, Sang-Min;Kim, Mun-Gyu;Cho, Jung-Woo;Yu, Sang-Hwa
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.415-427
    • /
    • 2021
  • This technical report briefly introduced the rock cutting splitting method under development. This method is a method of excavating the rock by splitting the block after the rock cutting process. After designing the cutting geometry of the rock face, the chisel is press-fitted to remove the rock block. At this time, when the cutting block is properly designed, the tensile crack propagates smoothly at the bottom of the rock block. An analytical solution was devised to estimate the indentation force required for splitting rock blocks using fracture toughness mode 1 required for tensile crack growth. The impact force of the hydraulic breaker of the excavator was analyzed, and the grade of the excavator that can be constructed according to the rock block design geometry was analyzed.

Pattern of Shear-induced Fracture Development in en Echelon Array : Discrete-element Approach (전단변형 시 안행상 균열의 끝에서 형성되는 새로운 균열 발달 형태 연구 : 개별요소적 접근)

  • Kwon, Soondal;You, Seungwan;Kwon, Sanghoon;Kim, Ki-seog
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.359-372
    • /
    • 2015
  • Rock masses include various rock discontinuities such as faults, joints, and bedding planes. These discontinuities appear as complex structures in geometry. In this study, growth patterns of fractures between two stepping shear fracture tips are numerically modeled using PFC2D (Particle Flow Code). The numerical model showed not only incipient growth of fractures at the tips of preexisting fractures but also subsequent growth of the new fractures. It is observed from all of the experiments that the incipient fractures are tensile cracks developed at $30{\sim}57^{\circ}$ to the preexisting fractures and the subsequent growth of these fractures were at low angles to the preexisting fractures this study.

A Numerical Study on the Effect of a Guide Hole on Crack Propagation Control in Blasting (발파에서 가이드공의 균열제어 유효성에 관한 수치 해석적 연구)

  • Lee, Hee-Gwang;Kim, Hak-Man;Kim, Seung-Kon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.299-307
    • /
    • 2010
  • The model experiments, which employ a charge hole and guide hole, are simulated to examine the effect of the guide hole on the crack propagation control in blasting. Crack patterns resulted from the analysis models, which consider the distance between the charge hole and guide hole, were compared. From the simulation analysis for the model experiments, it was revealed that all the guide holes used in this study were effective for controlling the crack propagation in blasting.

A Nuclide Transport Model in the Fractured Rock Medium Using a Continuous Time Markov Process (연속시간 마코프 프로세스를 이용한 균열암반매질에서의 핵종이동 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.529-538
    • /
    • 1993
  • A stochastic way using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock matrix as an extended study for previous work [1]. A nuclide migration model by the continuous time Markov process for single planar fractured rock matrix, which is considered as a transient system where a process by which the nuclide is diffused into the rock matrix from the fracture may be no more time homogeneous, is compared with a conventional deterministic analytical solution. The primary desired quantities from a stochastic model are the expected values and variance of the state variables as a function of time. The time-dependent probability distributions of nuclides are presented for each discretized compartment of the medium given intensities of transition. Since this model is discrete in medium space, parameters which affect nuclide transport could be easily incorporated for such heterogeneous media as the fractured rock matrix and the layered porous media. Even though the model developed in this study was shown to be sensitive to the number of discretized compartment showing numerical dispersion as the number of compartments are decreased, with small compensating of dispersion coefficient, the model agrees well to analytical solution.

  • PDF

Continuous Time Markov Process Model for Nuclide Decay Chain Transport in the Fractured Rock Medium (균열 암반 매질에서의 핵종의 붕괴사슬 이동을 위한 연속시간 마코프 프로세스 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.539-547
    • /
    • 1993
  • A stochastic approach using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock media as a further extension for previous works[1-3]. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock media in the vicinity of the radioactive waste repository is modeled using a continuous time Markov process. While most of analytical solutions for nuclide transport of decay chain deal with the limited length of decay chain, do not consider the case of having rock matrix diffusion, and have very complicated solution form, the present model offers rather a simplified solution in the form of expectance and its variance resulted from a stochastic modeling. As another deterministic way, even numerical models of decay chain transport, in most cases, show very complicated procedure to get the solution and large discrepancy for the exact solution as opposed to the stochastic model developed in this study. To demonstrate the use of the present model and to verify the model by comparing with the deterministic model, a specific illustration was made for the transport of a chain of three member in single fractured rock medium with constant groundwater flow rate in the fracture, which ignores the rock matrix diffusion and shows good capability to model the fractured media around the repository.

  • PDF

A Study on Subcritical Crack Growth Parameters in Rock-like Material under Monotonic and Cyclic Loading (단조 및 반복하중 하에서의 모사 암석 시료의 임계하 균열성장 지수에 관한 연구)

  • Ko, Tae Young
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • Subcritical crack growth in rock material can occur under monotonic and cyclic loading. Subcritical crack growth plays an important role in evaluating the long-term stability of structures in rocks. This paper presents the results of studies conducted to determine subcritical crack growth parameters under monotonic and cyclic loading in rock-like material. The constant stress rate method was employed for monotonic loading. The subcritical crack growth parameter of n under cyclic loading was determined by the relation between the rate of crack growth per cycle and stress intensity factor range. The specimens contained pre-existing flaws with 45 and 60 degrees of inclination angle and flaws spacing and continuity were varied to arrange crack growth in shear or tensile manner. The results show that the parameter of n is almost constant regardless of the applied load conditions such as monotonic and cyclic or shear and tension.

Influence of Pillar Width on the Stability of Twin Tunnels Using Scaled Model Tests (쌍굴터널 간 이격거리가 터널 안정성에 미치는 영향에 관한 모형실험 연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2015
  • Scaled model tests were performed to investigate the influence of pillar width, rock strength and isotropy/anisotropy on the stability of twin tunnels. Test models had respectively different pillar widths, uniaxial compressive strengths of modelling materials and model types, where both the deformation behaviors around tunnels and the biaxial pressure data at a time of pillar cracking were analysed. The cracking pressures of the higher strength models were higher than the lower strength models, whereas the percentage of cracking pressure to uniaxial compressive strength of modelling materials showed an opposite tendency. The cracking pressures of the shallower pillar width models were lower than the thicker models, moreover the percentage of that showed a same tendency. It has been found that the pillar width was one of the main factors influencing on the stability of twin tunnels. Model types such as isotropy/anisotropy also influenced on the stability of twin tunnels. The anisotropic models showed lower values of both cracking pressures and the percentage of that than the isotropic models, where the pillar cracks of anisotropic models were generated with regard to the pre-existing joint planes.