• Title/Summary/Keyword: 암반굴착면

Search Result 150, Processing Time 0.019 seconds

Study on Q-value prediction ahead of tunnel excavation face using recurrent neural network (순환인공신경망을 활용한 터널굴착면 전방 Q값 예측에 관한 연구)

  • Hong, Chang-Ho;Kim, Jin;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.239-248
    • /
    • 2020
  • Exact rock classification helps suitable support patterns to be installed. Face mapping is usually conducted to classify the rock mass using RMR (Rock Mass Ration) or Q values. There have been several attempts to predict the grade of rock mass using mechanical data of jumbo drills or probe drills and photographs of excavation surfaces by using deep learning. However, they took long time, or had a limitation that it is impossible to grasp the rock grade in ahead of the tunnel surface. In this study, a method to predict the Q value ahead of excavation surface is developed using recurrent neural network (RNN) technique and it is compared with the Q values from face mapping for verification. Among Q values from over 4,600 tunnel faces, 70% of data was used for learning, and the rests were used for verification. Repeated learnings were performed in different number of learning and number of previous excavation surfaces utilized for learning. The coincidence between the predicted and actual Q values was compared with the root mean square error (RMSE). RMSE value from 600 times repeated learning with 2 prior excavation faces gives a lowest values. The results from this study can vary with the input data sets, the results can help to understand how the past ground conditions affect the future ground conditions and to predict the Q value ahead of the tunnel excavation face.

터널굴착에서 불연속면에 의한 공동주변 암반블록의 안정성 해석

  • 송재준;이정인
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.109-120
    • /
    • 1995
  • 절리가 발달된 경암질 암반내에서 터널을 굴착할 때에 발생하는 심각한 문제중의 하나는 암반내에 존재하는 불연속면과 굴착에 의하여 형성되는 자유면에 의하여 생성된 블록의 낙반 사고이다. R.E. Goodman, Gen-hua shi$^{3)}$ 등에 의하여 제안된 블록이론은 암반사면이나 지하공동에 존재하는 절리들의 방향성을 조사하여 우세한 방향의 절리들에 의하여 발생하는 블록들의 안정, 불안정 및 낙반의 가능성 여부를 판정할 수 있도록 하였다. (중략)

  • PDF

Analysis on the TBM Penetration Rates in Extremely Hard Rocks (극경암에서의 전단면터널 굴착속도 분석연구)

  • Park, Chul-Whan;Synn, Joong-Ho;park, Chan;Kim, Min-Kyu;Chung, So-Keul;Kim, Hwa-Soo
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.526-532
    • /
    • 2000
  • The uniaxial compressive strength of rock mass is known as the major factor in the assessment of drillability and the optimum excavation design in full-face tunnel excavation by TBM. Referring to worldwide cases, TBM has been applied mostly to the rock mass within the strength range of 80~250 MPa. Recently, a water way tunnel has been constructed as a part of Milyang dam project by TBM within the rock masses where the rock type is mainly granite with some granophyre, hornfels and andesite. Their uniaxial compressive strengths in extended area are estimated higher than 260 MPa. In this paper, the relation between the penetration rate and the rock mass properties is analyzed and TBM application to the very hard rocks is discussed. As a result that three suggestions to predict the TBM net penetration rate are analyzed, NTH method seems a better approach than other methods in the extremely hard rocks. NTH prediction matches with the results of actual values with the variations of 2~20%. Hardness measurement by Schmidt hammer and RMR estimation are carried out along the L = 5.3 km entire TBM tunnel alignment. The net penetration rate measured monthly is shown to be reciprocally proportional to Schmidt rebound hardness and RMR where coefficients of correlation, $R^2$are 0.705 and 0.777 respectively. As a result, they are good quantitative indices for the prediction of TBM net penetration rate in the extremely hard rocks. Magnitude of in-situ stress has a certain effect on TBM performance, and it is required to measure the in-situ stresses in TBM excavation design.

  • PDF

Displacement Analysis of an Excavation Wall using Inclinometer Instrumentation Data, Banyawol Formation, Western Daegu (경사계를 이용한 대구 서부지역 반야월층 굴착 지반의 변위 분석)

  • Ihm, Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • To analyze lateral displacement of excavation walls exposed during the construction of Subway Line 1 in the Daegu region, inclinometer measurement data for sites D4, D5, and Y6 are investigated from the perspective of engineering geology. The study area, in the Banyawol Formation, Hayang Group, Gyeongsang Supergroup, is in the lower part of bedrock of andesitic volcanics, calcareous shale, sandstone, hornfels, and felsite dykes that are unconformably overlain by soil. The rock mass around the D4 site is classified as RMR-V grade and the maximum lateral displacement of 101.39 mm, toward N34W, was measured at a bedding-parallel fault, at a depth of 12 m. The rock mass around the D5 site is classified as RMR-IV grade and the maximum lateral displacement of 55.17 mm, toward the south, was measured at a lithologic contact between shale and felsite, at a depth of 14 m. The rock mass around the Y6 site is classified as RMR-III grade and the maximum lateral displacement of 12.65 mm, toward S52W, was measured at an unconformity between the soil and underlying bedrocks, at a depth of 7 m. The directions of lateral displacement in the excavation walls are vector sums of the directions perpendicular to the excavation wall and horizontally parallel to the excavation wall. Lateral displacement graphs according to depth in the soil profile show curvilinear trajectories, whereas those in bedrock show straight and rapid-displacement trajectories.

Application of a Hydraulic Rock Splitting System to Bench-Cut Field Experiments (수압암반절개시스템을 이용한 벤치컷 현장 적용 사례 연구)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.725-733
    • /
    • 2022
  • This study applied a hydraulic rock splitting system equipped with a hybrid packer to the bench-cut method. The hybrid packer system is an improvement of the packer developed in previous studies; it is designed efficiently to reduce vibration and noise during rock excavation by combining the two functions of inducing hydraulic fractures using injection pressure and then expanding and extending them using a rubber packer. Field experiments assessed the efficiency of rock excavation with respect to the injection conditions; the adjusted experimental conditions included the distance from the free surface and the test holes drilled at the top of the slope and the injection settings. Using a separation of 5 m left some unexcavated parts, but using a separation of 1 m left no unexcavated parts. The hydraulic fractures generated by the injection pressure developed generally parallel to the free surface and expanded and extended as the rubber packer expanded, thus facilitating bench-cut excavation. For hydraulic rock splitting to be broadly applicable to bench-cut rock excavation, it is important to accumulate results from many field experiments conducted under varying experimental conditions for various types of rockmass.

Effects of free surface using waterjet cutting for rock blasting excavation (워터젯 자유면을 이용한 암반발파 굴착공법의 효과)

  • Oh, Tae-Min;Cho, Gye-Chun;Ji, In-Taeg
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The conventional blasting method generates serious blasting vibration and underbreak/overbreak in spite of its high efficiency for rock excavation. To overcome these disadvantages, this paper introduces an alternative excavation method that combines the conventional blasting process with the free surface on the perimeter of the tunnel face using waterjet cutting technology. This proposed excavation method has advantages of (1) reducing vibration and noise level; (2) minimizing underbreak and overbreak; and (3) maximizing excavation efficiency. To verify the effects of the proposed excavation method, field tests were performed with a smooth blasting method at the same excavation conditions. Test results show that the vibration is reduced by up to 55% and little underbreak/overbreak is generated compared with the smooth blasting method. In addition, the excavation efficiency of the proposed method is greater than that of the smooth blasting method. The proposed blasting method with a free surface using waterjet cutting can be applied to urban excavation construction as well as to underground structure construction.

A Case Study on the Occurrence and Solution of Stability problems around Large Underground Storage Cavern in Highly Stressed Rock Mass (과지압 암반내 대규모 지하공동 안정성 문제 및 대책)

  • Lee, Dae-Hyuck;Lee, Hee-Suk;Park, Yeon-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.622-640
    • /
    • 2009
  • 원유 비축기지 저장공동과 같이 상하로 긴 형상의 대규모 공동에서 횡방향의 지압이 과도하게 작용하면 천정부의 응력집중과 측벽의 암반 변위가 과도하게 발생하여 저장공동의 불안정 요인이 된다. 특히 지압의 절대 크기가 암반 강도의 일정 비율 이상이 되면 응력 집중에 의한 암반의 취성 파괴를 유발하고, 이러한 현상은 터널 굴착 시 발생하는 파괴음(popping)과, 굴착면에 평행한 형태로 암편이 탈락하는 취성파괴(spalling) 현상을 동반한다. 이 글에서는 대규모 지하저장공동 굴착시 실제 발생한 과지압으로 인한 문제 사례에 대해 소개한다. 저장공동 굴착시 관찰된 암편 및 숏크리트 탈락과 균열 발생 현상을 관찰하고 암반 계측결과 분석을 통해 과지압의 현상을 진단하였다. 과지압 구간의 현재 상태 및 원안 설계안에 대해 연속체 및 불연속체 안정성 해석을 실시하여 문제의 심각성을 평가하였다. 이를 통해 굴착 형상 변경 및 특수 보강 방안을 제안하였으며 제안된 안의 보강효과에 대한 수치해석 평가 결과를 재검토 하였다. 이들 결과를 종합하여 과지압구간 보강안을 도출하였으며 상시 안정성 감시 대책으로 현장 암반의 미소파괴음 계측 방안을 제시하였다.

  • PDF

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF

Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method (SB발파에서 파단면 제어의 고도화에 관한 연구)

  • Cho, Sang-Ho;Jeong, Yun-Young;Kim, Kwang-Yum;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Recently, in order to achieve smooth fracture plane and minimize the excavation damage zone in rock blasting, controlled blasting methods which utilize new technologies such as electronic delay detonator (EDD) and a notched charge hole have been suggested. In this study, smooth blastings utilizing three wing type notched charge holes are simulated to investigate the influence of explosive initial density on the resultant fracture plane and damage zone using dynamic fracture process analysis (DFPA) code. Finally, based on the dynamic fracture process analyses, novel smooth blasting method, ED-Notch SB (Electronic Detonator Notched Charge Hole Smooth Blasting) is suggested.