• Title/Summary/Keyword: 암모니아 주입비

Search Result 33, Processing Time 0.038 seconds

Investigation of SO2 Adsorption Capacity of the Activated Carbon with O2-NH3 Treatment (O2-NH3 처리로 인한 활성탄의 SO2 흡착능 조사)

  • 고윤희;서경원;박달근
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.76-84
    • /
    • 1995
  • 본 연구에서는 코코넛 껍질로부터 제조한 활성탄을 열 및 산소-암모니아의 혼합가스로 전처리하여 표면의 특성 변화와 이산화황 흡착능에 미치는 영향을 살펴보았다. 전처리한 활성탄으로 이산화황 흡착실험을 수행한 결과, 전처리한 활성탄은 기본 활성탄 시료보다 높은 흡착능력을 보였다. 본 연구의 전처리 실험에서는 산소와 암모니아를 주입하여 활성점을 제공하는 산소와 환원성 분위기를 조성하는 질소관능기를 도입하였다. 전처리 조건은 0∼25%의 암모니아와 473∼1273K의 온도이며 처리조건을 변화시킴으로써 표면 기능의 척도가 되는 세공구조와 원소조성 및 표면 관능기 등에 직접적인 영향을 주었다. 흡착능력은 고정층 반응기에서 전자 비틀림 저울로 이산화황 흡착량을 측정하여 비교하였고, 이 과정 중의 활성탄 표면의 특성변화를 원소분석, 승온탈착법, 산-염기 적정법, 주사현미경법 등의 분석 방법을 통해서 알아보았다. 그 결과, 이산화황의 최대 흡착 능력은 온도조건 973∼1173K에서 나타났다. 또한, 암모니아로 처리하지 않은 활성탄에 비하여 암모니아로 처리한 활성탄은 그 주입농도에 관계없이 이산화황의 흡착제거율을 약 48% 정도 향상시켰다.

  • PDF

Recycling Water Treatment of Aquaculture by Using Three Phase Fluidized Bed Reactor (삼상유동층 반응기를 이용한 양어장 순환수 처리에 관한 연구)

  • LEE Byung-hun;KIM Jeong-sook;KANG Im-suk
    • Journal of Aquaculture
    • /
    • v.7 no.3
    • /
    • pp.177-187
    • /
    • 1994
  • The objective of the present study were to evaluate nitrification characteristics and determine optimum treatment conditions of three phase fluidized bed reactor for recycling water treatment of aquaculture. When the loading rates were 2.739-0.086kg $COD/m^3/day$ and 1.575-0.128kg $NH_4\;^+-N/m^3/day$, COD and ammonia removal efficiencies were $56.3-94.7\%\;and\; 67.3­92.6\%$, respectively. The maximum removal rates of COD and ammonia were 1200mg/l/day and 488mg/l/day, respectively. Ammonia removal rates were more than $90\%$ beyond 1hr HRT. The ammoniaremoval efficiency was sensitive to the variation of media concentration and air flowrate.

  • PDF

A Theoretical Performance Analysis of Small Liquid Rocket Engine for Space Vehicle Attitude Control (우주비행체 자세제어용 소형 액체로켓엔진의 이론성능 해석)

  • Kim Jeong-Soo;Park Jeong;Kim Sung-Cho;Choi Jong-Wook;Jang Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-200
    • /
    • 2005
  • A theoretical model for the calculation of chemical equilibrium composition of propellant combustion product is briefly presented for the performance analysis of monopropellant hydrazine rocket engine. Analysis result is compared to that of test and evaluation of 1-lbf class thruster and is scrutinized primarily from the view point of ammonia dissociation fraction. Chemical equilibrium composition and average molecular weight is additionally depicted according to the variation of propellant inlet pressures and the varying nozzle area ratio. The theoretical analysis is tried as a way of derivation of design parameters for mid- and large-thrust class of monopropellant rocket engines.

  • PDF

Development of La(III)-zeolite Composite for the Simultaneous Removal of Ammonium Nitrogen and Phosphate in Confined Water Bodies (호소수내 암모니아성 질소 및 인 동시 제거를 위한 란탄-제올라이트 복합체 개발)

  • Paek, Joo-Heon;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • This study was aimed to propose La(III)-zeolite composite which can effectively and simultaneously remove ammonia and phosphate in confined water bodies such as lakes and ponds. The optimum ratio of La(III):zeolite for the simultaneous removal of ammonia and phosphate was 0.0048 La(III) g:1 zeolite g. The drying temperature of La(III)-zeolite composite severely affected phosphate adsorption showing optimum condition at room temperature. It was revealed that the optimum dosage of La(III)-zeolite composite was 4.052 g/L at adsorption time of 90 min. The presence of alkalinity in aqueous solution brought positive effect on phosphate adsorption. Detachment of La(III) from La(III)-zeolite composite, which was dried at room temperature, was not observed in aquous solution. It indicates that La(III)-zeolite composite could effectively block phosphate released from sediment.

Investigation on Optimal Aeration Rate for Minimizing Odor Emission during Composting of Poultry Manure with Sawdust (계분톱밥 퇴비화시 악취발생의 최소화를 위한 적정 공기주입을 구명)

  • Kang, Hang-Won;Park, Hyang-Mee;Ko, Jee-Yeon;Lee, Jae-Saeng;Kim, Min-Tae;Kang, Ui-Gum;Lee, Dong-Chang;Moon, Huhn-Pal
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.225-231
    • /
    • 2001
  • This study was conducted to find out the optimal aeration rates for minimizing odor emission and for increasing biological activities during composting of livestock manure in the enclosed bench-scale reactor system. It was treated with the mixture of poultry manure and sawdust controlled the initial water content of 60%, then aerated continuously at four different aeration rates (0.1, 0.2, 0.4 and 0.6 L/min/kg dry-solids). The average emitted concentration of ammonia in 0.6 L/min/kg dry-solids during composting reached the level of 40% in comparison with that of 0.2 L/min/kg dry-solids. In cases of sulfur compounds such as hydrogen sulfide, methylmercaptan and ethylmercaptan, their concentrations decreased with increasing aeration rates and the emission time was shortened. But they didn't detect in the treatment of 0.6 L/min/kg dry-solids. The biological activity for composting showed a trend of increasing as aeration rates increased. The treatment of 0.6 L/min/kg dry-solids gave the highest biological activity and the best compost quality.

  • PDF

Effect of Operational Parameters on the Ammonia Stripping (암모니아 스트리핑에 미치는 운전인자의 영향)

  • Seo, Jeong-Beom;An, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.935-939
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to examine effect of operational parameters such as air supply, hydraulic retention time, pH on the nitrogen removal by ammonia stripping and to increase influent C/N ratio without required carbon source. The ammonia stripping system used for the bench-scale experiment in laboratory had a dimension of 15 cm diameter and 150 cm height. The ammonia stripping reactors were classified into two types, type AS I and type AS II, according to there using or not media. Results of the research showed that the T-N removal efficiency of AS I using plastic media is slightly higher than AS II without media. In experimental condition of air supply 30 L/min and pH 12.5, T-N removal efficiencies increased as HRT of ammonia stripping reactor became longer from 8 hr to 36 hr. In experimental condition of HRT 36 hr, it was also found that the T-N removal efficiencies improved through increase of air supply. On the other hand, C/N ratio of wastewater was increased from average 3.9 to 5.4 by ammonia stripping.

Removing High Concentration Nitrogen by Electrolysis (전기분해에 의한 고농도 질소 제거의 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Choi, Hae-Kyoung;Kwon, Dong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-277
    • /
    • 2000
  • Laboratory experiments were conducted to investigate characteristics for removing ammonia-nitrogens by electrolysis methods. A stainless steel plate is used as the cathode and either $IrO_2{\backslash}Ti$ plate serves as the anode. Experiments were conducted to examine the effects of the operating conditions, such as the current density, retention time, electrode gap, $Cl^-/NH_4{^+}-N$ on the $NH_4{^+}-N$ removal efficiency. Possible optimum range for these operating variables are experimentally determined. The $NH_4{^+}-N$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/NH_4{^+}-N$ ratio was about $20.0kgCl^-/kgNH_4{^+}-N$ when $NH_4{^+}-N$ removal obtained 73 %, $Cl^-/NH_4{^+}-N$ ratio needs $27.6kgCl^-/kgNH_4{^+}-N$ so as to $NH_4{^+}-N$ completely remove. The removal efficiency of $NH_4{^+}-N$ increase with current density, retention time and $Cl^-/NH_4{^+}-N$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $NH_4{^+}-N$ removal efficiencies are $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ With adding COD or/and alkalinity, relationships are $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ There existed a competition between the removals for $NH_4{^+}-N$ and $COD_{Cr}$ during electrolysis, the removal of $NH_4{^+}-N$ was shown to be dominant. $NH_4{^+}-N$ removal was high as addition of glucose and alkalinity.

  • PDF

Characteristics of NH3 Decomposition according to Discharge Mode in Elongated Rotating Arc Reactor (신장 회전아크 반응기에서 방전모드에 따른 암모니아 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Jo, Sung Kwon;Song, Young-Hoon;Kim, In Myoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.356-362
    • /
    • 2013
  • An attempt has been made to optimize elongated rotating arc plasma $NH_3$ scrubber. Among diverse semiconductor processes, diffusion and implantation process inevitably produce $NH_3$ as byproduct and efficient dry process for the decomposition of $NH_3$ is required. Plasma process does not produce NOx that is commonly produced in combustion process and there is no problem of deactivation, usually experienced in catalyst process. However, plasma process uses electrical energy and needs to be optimized to achieve feasibility of application. In this work, mode control of rotating arc is presented as tentative solution for the possible optimization of the process. Based on existing rotating arc, scale-up and following mode mapping was tried. Proposed reactor design was evaluated in the $NH_3$ decomposition process and revealed that optimization scheme is at hand. In the experiment of full scale scrubber including heat exchanger, the process gave more stable and efficient process of $NH_3$ decomposition.

Development of a Vertical Multi-stage Ammonia Stripping Reactor for Recovering Ammonia from wastewater with High Nitrogen Concentrations(I) (고농도 질소폐수로부터 암모니아 회수를 위한 다단수직형 암모니아스트리핑조 개발(I))

  • Lee, Jae Myung;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • A vertical multi-stage ammonia stripping reactor using E-PFR, which has been proved to be superior in anaerobic and aerobic treatment, was developed and a lab scale experiment was conducted. According to the change of stage number condition, the removal rate of the ammonia nitrogen in the reactor with 0-stage was about 52.5% after 8 hours (pH 10, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$) However, in the reactor with 5-stage, the removal efficiency was about 62.6%. According to the change of pH condition, the removal rate of ammonia nitrogen was about 42.6% at pH 9 after 8 hours, and was about 74.4% at pH 11 (5-stage reactor, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$). According to the change of temperature condition, the removal rate of the ammonia nitrogen was about 51% at $25^{\circ}C$ after 8 hours (5-stage reactor, pH 10, and the air/liquid ratio $3min^{-1}$), and was about 87.2% at $45^{\circ}C$. According to the change of air injection volume condition, the removal rate of the ammonia nitrogen was about 45.8% at $2min^{-1}$ after 8 hours (5-stage reactor, pH 10, and at $35^{\circ}C$). and was about 75% at $4min^{-1}$. Based on these results, we will follow up the applicability of the actual plant in the future through continuous operation evaluation.

Decontamination of Chemical Warfare Agent Simulants using Vapor-phase Hydrogen Peroxide (과산화수소 증기를 이용한 유사화학작용제의 제독)

  • Kim, Yun-Ki;Yoo, Hyun-Sang;Kim, Min-Cheol;Hwang, Hyun-Chul;Ryu, Sam-Gon;Lee, Hae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.360-365
    • /
    • 2014
  • Vapor-phase hydrogen peroxide(VPHP) has been used as a sterilant in the field of medical and pharmaceutical application due to low corrosive than chlorine contained sterilant. In addition, it is well known that VPHP is effective for decontamination of chemical warfare agents by adding ammonia gas. In this study, the decontamination efficiency was confirmed about CEPS, DFP and dimethoate as simulants of HD, GD and VX using VPHP respectively. For this purpose, VPHP generated from self configured device was injected into decontamination chamber and maintained for reaction time. After the decontamination, the residues are analyzed by GC/MS and decontamination efficiency was calculated. Through by-product for each simulants, the similarities in reaction mechanism of chemical warfare agents were confirmed. CEPS was completely decontaminated at 30% relative humidity within 60 min. By adding ammonia gas, DFP and dimethoate were completely decontaminated within 30 and 150 min respectively.