• Title/Summary/Keyword: 알톱밥

Search Result 47, Processing Time 0.025 seconds

Thermochemical conversion of biomass in a fluidized bed pyrolyzer (유동층 열분해로에서의 바이오매스 열화학적 전환)

  • Lee Seehoon;Kim Younggu;Hong JaeChang;Yoon Sangjun;Choi Youngchan;Lee Jaegoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.467-470
    • /
    • 2005
  • 지구온난화 현상과 화석연료의 고갈에 대한 두려움 때문에 재생에너지에 대한 관심이 지속적으로 증가하고 있다. 이에 따라 대체에너지, 합성가스, 화학 원료, 오일 등으로 전환할 수 있는 바이오매스 활용에 대한 연구도 활발히 진행되고 있다. 바이오매스의 열화학적 전환 공정에는 열분해, 연소, 가스화 등이 이용되고 있다. 특히 열분해는 syringol, levoglucosan, guaiacol등의 고부가가치 물질들을 생산하기에 적합한 기술로 인정받고 있다. 본 연구에서는 국내에서 쉽게 구할 수 있는 톱밥, 폐목재 등의 바이오매스의 열화학적 전환 특성을 분석하였다. 사용된 바이오매스의 열분해 특성은 열중량 분석기 및 열천칭 반응기를 통해 분석하였으며 이를 통해 유동충 반응기(지름 0.2m, 높이 2m)를 설계 및 제작하였다. 반응온도 및 산소 농도가 증가할수록 levoglucosan 등의 고부가가치 물질들의 수율이 낮아지며 페놀류가 급격히 증가함을 알 수 있었다. 회재 성분이 높은 왕겨의 바이오오일 수율은 톱밥보다 $30\%$이상 낮게 나타났다

  • PDF

A Change in Surface Temperature of Ceramics Made from Board Mixed with Sawdust and Rice Husk - Effect of Resin Impregnation Rate and Carbonization Temperature - (톱밥과 왕겨 혼합보드로 제조된 세라믹의 표면 온도 변화 - 수지함침율 및 탄화온도의 영향 -)

  • Oh, Seung-Won;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This study was aimed at offering basic data to develop a new use of sawdust and rice husk. The results of this study were as follows: In surface temperature of ceramics by resin impregnation rate, the velocity was great in the early time of heat transfer because the temperature precipitously increased to 10 minutes elapsed. Also, the surface temperature of ceramics manufactured in resin impregnation rate of 60~70% indicated the highest. Heat transfer was fast in terms of the changes in surface temperature of ceramics according to the carbonization temperature, as because the density of ceramics made on condition of the carbonization temperature of $1000^{\circ}C$and $1200^{\circ}C$ was high. Moreover, ceramics maintained heat for a long time because the descent velocity of surface temperature of ceramics was slower than that of heater.

Laboratory and In-Situ Study of the Effect of Additives on the Compaction Strength of Snow (적설의 다짐강도에 대한 부가물의 효과에 관한 실험 및 실제적인 고찰)

  • Barber. M.;Brown, R. L.
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.71-77
    • /
    • 1988
  • 적설의 다짐강도에 대한 부가물의 효과를 고찰하기 위한 연구가 수행되었다. 본 연구의 목적은 본 연구에서 얻은 결과를 토대로 적설의 압착과정을 촉신시키고 나아가서 남극의 설상로나 설상활주로 등의 다짐강도를 증진시키는 데 있다. 실험실에서의 실험결과에 의하면 처리된 눈에 소량의 톱밥을 섞었을때 더 큰 강도를 얻을 수 있다는 것을 알 수 있었으며, 이 방법은 남극과 McMurdo 설상로에 있는 시험도 에서 실제 적용되었다. 현지 실험에서 얻은 자료를 분석한 결과 적설의 고결은 일반적으로 예측되는 극한 환경에서 보다 빨리 진행되었으며, 궁극적으로 큰 지장없이 육중한 운송장비를 지지할 수 있는 충분한 다짐강도를 얻을 수 있다는 것을 알 수 있었다.

  • PDF

Characteristics of Composting of Cow Manure With Kimchi Factory Waste and Effects on Growth of Lettuce by Its Application (김치공장 부산물 혼합처리에 따른 우분의 퇴비화특성 및 시비효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Tae-Soon;Jeong, Je-Yong;An, Ji-Ye;Song, Hye-Yeon;Chung, Young-Bae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • This study was conducted to evaluate effects of Kimchi factory waste (KFW) as bulking agent on physicochemical properties of cow manure (CM) composting and of its application on lettuce growth. Treatments were designed as follows; CM compost [65 % CM + 35 % sawdust (SD); control], KFW 5 % (65 % CM + 30 % SD + 5 % KFW), KFW 10 % (65 % CM + 25 % SD + 10 % KFW) and KFW 15 % (65 % CM + 20 % SD + 15 % KFW). After composting for 25 days, temperature of KFW treatments was lower than that of control. As compared with control, water content of KFW 15 % treatment was low about $5^{\circ}C$, and content of organic matter (O.M.) and nitrogen (N) was higher. pH and O.M./N ratio of KFW treatments or control were unaffected. In comparison with germination index (G.I.), G.I.s of KFW treatments were more than 70 on 25 days and G.I. of control on 35 days. As applied with KFW composts in lettuce, dry weight of KFW 10 % and KFW 15 % were increased by 84 % and 67 %, respectively, than that of control. These results indicated that Kimchi factory waste was possible to use as the compost law materials in livestock manure composting and to replace some sawdust as bulking agent.

Amino Acids in Humic Acids Extracted from Organic By-product Fertilizers (유기질 부산물 비료에서 추출한 부식산 중 아미노산 특성)

  • Yang, Jae-E.;Kim, Jeong-Je;Shin, Myung-Kyo;Park, Yong-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.128-136
    • /
    • 1998
  • Most of total nitrogen in the surface soil exists in organic forms, of which amino acid-N is the major fraction. By-product fertilizers provide soil with humic substances, and humic acid is an essential component of humus. Amino acids(AAs) are easily converted to inorganic-N forms and thus play an important role in N fertility. This experiment was conducted to investigate the contents and distributions of AAs in humic acids which were extracted from the commercial by-product fertilizers of different composting materials. Total contents of AAs in humic acids ranged from 1.2 to 5.6%, of which neutral AAs were the highest with ranges of 0.8~4.5%. AAs contents in fertilizers composted from the plant residues such as leaf litter, sawdust and bark were in an order of neutral>acidic>basic AAs. In contrast, those from animal wastes, such as poultry and pig manures, were in an order of neutral>basic>acidic AAs. Distributions of total, acidic and neutral AAs were in the respective order of leaf litter>sawdust>pig manure>poultry manure>peat, bark>sawdust>leaf litter>peat and leaf litter>sawdust>bark>peat. Distributions of the basic AAs were in the reversed order of the acidic AAs. In bark fertilizer with increasing compost maturity, contents of the acidic AAs were increased in compensation for the decreases in those of neutral and basic AAs. Results demonstrated that distributions of amino acids in humic acid of by-product fertilizers were different from composting raw materials and degrees of humification.

  • PDF

Development of mushroom spawn production technology of low price by the superior bag spawn (저비용 우량봉지종균 생산기술 개발)

  • Jo, Woo-Sik;Hwang, Eok-Keum;Kim, Chan-Yong;Cho, Doo-Hyun;Choi, Seung-Yong;Park, So-Deuk
    • Journal of Mushroom
    • /
    • v.8 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • The word spawn is derived from an old French verb, espandre, meaning to spread out or expand. Spawn is also defined as "the mycelium of fungi, especially of mushrooms grown to be eaten, used for propagation". The effects of bag spawn to sawdust substrate on the growth of Pleurotus ostreatus were conducted. The duration of mycelial growth and days of pinhead formation of bag spawn(2.5kg) were 18~19days and 7~8days, whereas bottle spawn ($1,000m{\ell}$) was 18days and 6days, respectively. The yield of mushroom fruitbody was that bag spawn is 100~118g, bottle spawn is 95~115g. In economical analysis, bag spawn is increased to 50%, compared to bottle spawn in relative income.

  • PDF

Physico·Chemical Properties of Organic and Inorganic Materials Used as Container Media (혼합배지 조제에 이용되는 유·무기 물질들의 물리·화학적 특성)

  • Choi, Jong Myung;Chung, Hae Joon;Choi, Jong Seung
    • Horticultural Science & Technology
    • /
    • v.18 no.4
    • /
    • pp.529-535
    • /
    • 2000
  • Organic materials such as composted rice-hull, saw dust, and pine bark, and inorganic materials such as vermiculite, perlite, and recycled rockwool were commonly employed as container media in domestic greenhouse industry. The objective of this research was to get informations in soil physico chemical properties of those materials. Composted dry-peeling bark and wet-peeling bark had 72.1% and 69.1%, respectively, in particles larger than 1.0 mm, which were much higher than 34.7% of composted rice-hull and 33.7% of composted saw dust. Imported vermiculite had 89.9%, but domestic vermiculite had 25.7% in particles larger than 1 mm. In soil physical properties, Russian peat had the highest container capacity of 79.3%, and wet-peeling bark had the lowest container capacity of 58.2%. However, Russian peat and composted saw-dust had 4.1% in air space indicating that possible problems could occur in soil aeration when those are employed for container grown crops. Saw dust had $2.3mS{\cdot}cm^{-1}$ in electrical conductivity, while other composted organic materials had less than $0.25mS{\cdot}cm^{-1}$. Imported vermiculite had 64.0 meq/100 g in cation exchange capacity, which was 2.4 times higher than those of domestic vermiculite, 27.2 meq/100 g. Domestic vermiculite had higher Ca and Mg and less Na contents than those of imported vermiculite.

  • PDF

Bending Strength of Board Manufactured from Sawdust, Rice Husk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 휨성능)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • Purpose of this study is reviewing the use method for the sawdust (sawmilling by-product) and rice husk (Agriculture by-product) by adding charcoal, an eco-friendly material. Mixed composite boards were manufactured with those materials with each density and mixing ratio, and bending performance was investigated. When the addition ratio of sawdust, rice husk and charcoal is 50:20:20 and the resin addition ratio is 10%, as the density of the prepared mixed board ranges from 0.5 g/cm3 to 0.7 g/cm3, the bending strength was 0.42~3.24 N/mm2, dynamic modulus of elasticity was 94.5~888.4 N/mm2, and the static modulus of elasticity was in the range of 31.4~220.7 N/mm2. As the density increased, the bending performance increased, indicating that the density had a significant effect on the bending performance. In a board prepared by setting the density of 0.6 g/cm3, the addition ratio of sawdust to 50%, and the addition ratio of rice husk and charcoal at different ratios, the bending performance showed a tendency to decrease as the addition ratio of charcoal increased. The relationship between the addition ratio of rice husk and charcoal, bending strength, resonance frequency, and dynamic and static bending modulus showed a rather low correlation with the values of the coefficient of determination (R2) of 0.4562, 0.4310, 0.4589, and 0.5847, respectively. Thus, we found that the effect of the addition ratio on the bending performance was small.

Cultivation characteristics and yield of Sparassis latifolia depend on the substrate mixture (꽃송이버섯(Sparassis latifolia) 생육배지 조성에 따른 재배특성 및 수량)

  • Heo, Byong-Soo;Choi, Kyu-Hwan;Jo, Yeong-Min
    • Journal of Mushroom
    • /
    • v.20 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • We investigated the standard cultivation substrate for Sparassis latifolia "Neowul" bred in Jeollabuk-do Agricultural Research and Extension Services. Cultivation characteristics and yield were assessed by varying the kind of sawdust and additives, and the mixing ratio. The cultivation period in larch sawdust was the shortest at 97 days. The yield was excellent (143.6 g). The findings indicated that larch is a tree species appropriate for the cultivation of S. latifolia. When the additives were varied, the yield and productivity (53.1%) were highest (116.6 g) for the wheat bran treatment. Thus, wheat bran would be an additive appropriate for culturing S. latifolia. Concerning the use of different mixing ratios, larch sawdust:beet-pulp:wheat bran ratios of 80:15:5 and 85:10:5 resulted in yields of 114.4 g and 111.4 g, and productivity of 52.5% and 51.8%, respectively. These yield and productivity values were not statistically different. Thus, the standard cultivation substrate for S. latifolia can comprise larch sawdust, beet pulp, and wheat bran at a ratio of 80:15:5 or 85:10:5. The carbon/nitrogen (C/N) ratio assumed to be appropriate for the cultivation of S. latifolia was 184-223. Pinheading would be difficult below a C/N substrate ratio of 105. Thus, the C/N ratio of the media, as well as the pH, would be vital factors affecting pinheading during S. latifolia cultivation.

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.