• Title/Summary/Keyword: 알칼리 산화침출

Search Result 8, Processing Time 0.017 seconds

Water Leaching of Tungsten and Vanadium through Mechanochemical Reaction of Their Oxides and Alkali-Compounds (알칼리화합물과 텅스텐/바나듐산화물의 기계화학반응을 이용한 수 침출 연구)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Water leaching of tungsten(W) and vanadium(V) was researched from their oxides through mechanochemical (MC) reaction with alkali compounds. Intensive grinding for the mixture of tungsten/vanadium oxide and alkali compounds (NaOH, $Na2CO_3$) was carried out with change of their mixing ratios and grinding duration. Water soluble compounds, $Na_2WO_4$ and $NaVO_3$, were synthesized through MC reaction and their solubilities increased in proportion to the mixing ratio of sodium compound and grinding times. Whereas vanadium leachability was less affected by the mixting ratio and grinding times. The leachabilities of 99.0% were accomplished by a short period of MC treatment, W (30 min.) and V (5 min.). This process enable us to extract W and V from their oxides via a water leaching, and can be applied to the selective recovery of W and V from $DeNO_x$ spent catalysts.

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

Removal and Separation of Metallic Constituents from the By-product Recovered from Gold Mine Tailings (금(金) 광산(鑛山) 폐광미(廢鑛尾)로부터 회수(回收)된 금속광물(金屬鑛物) 부산물(副産物) 중의 금속성분(金屬成分) 분리(分離), 제거연구(除去硏究))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • Domestic gold mine tailings, generally, contain a lot of non-metallic silica and clay minerals. These minerals can be separated from the tailings by various physical separation methods and used as raw materials for cements and ceramic products. In these physical separation procedures, metallic complex sulfides, in which Au and metallic constituents such as Pb, As and Fe were concentrated, were obtained as a by-product. These metallic constituents should be removed or separated from the by-product to extract Au efficiently. In this work, removal and separation processes of Pb, As, and Fe from the by-product were investigated. Pb was removed to under 3% by using alkaline oxidative leaching at the leaching condition of $120^{\circ}C$, 2M NaOH, 100psi $Po_2$, 250r.p.m., 4 wt.% solid and 30 min. leaching time. The leached residue was roasted and separated magnetically to obtain a non-magnetic product contained <0.2% As, <3% Fe and high concentrated Au more than 8,000 ppm.

Method for Making High Purity Gallium by Electrowinning (전해채취에 의한 Gallium의 정제기술)

  • Choi, Young-Jong;Hwang, Su-Hyun;Jeon, Deok-Il;Han, Kyu-Sung
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.63-67
    • /
    • 2014
  • Gallium is an important material and is used by industry of oxide semi-conductor and LED chip. However, the most of the gallium-containing waste resources became outflow abroad and the most of which is imported from oversea by following technical problem and low circulation rate. In this research, the recovery of high purity Gallium metal from Gallium scrap, which containing about 30% of Gallium, was investigated by using hydro-metallurgical process. As pretreatment, the Gallium scrap was pulverized and leached by strong acid such as hydro chloric acid. At the leached solution, Indium was separated as an Indium sponge by substitution reaction and then Gallium and Zinc hydroxide separated and filtrated using strong alkaline solution such as sodium hydroxide by precipitation method. Also, Gallium metal and Zinc metal was recovered by electrowinning method. To make an electrolytic solution, Gallium and Zinc hydroxide was leached by strong alkaline solution. Finally, High purity Gallium metal was recovered by vacuum refining process to remove the Zinc impurity.

Effective Coagulation and Fenton Reagent Oxidation of Effluent from Biological Landfill Leachate Treatment (생물학적 처리 침출수의 응집 및 펜톤산화 처리)

  • Won, Jong-Choul;Namkoong, Wan;Park, Ki-Hyuk;Cho, Joon-Ho;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.811-817
    • /
    • 2000
  • The objectives of this study are to determine optimal operation condition of chemical coagulation with ferric chloride($FeCl_3$) and fenton reagent oxidation for effluents of a biological denitrification treatment and an existing lagoon treatment of landfill leachate, and to investigate the effect of alkalinity on fenton oxidation. In jar-tester, optimum dosage of ferric chloride for removal of COD was $1,500mgFe^{3+}/L$, removal efficiencies of $COD_{Cr}$ and $COD_{Mn}$ under this condition were about 55% and 64%, respectively. After chemical precipitation($1,500mgFe^{3+}/L$) of biological treatment effluent, optimum $Fe^{2+}/H_2O_2$ ratio of fenton oxidation was 1.5, the maximum removal efficiency of COD was about 80%, and optimum dosages of ferrous sulfate and hydrogen peroxide were $600mgFe^{2+}/L$ and $400mgH_2O_2/L$, respectively. The removal efficiency of COD was decreased as alkalinity was increased.

  • PDF

Recovery of Gallium and Indium from Waste Light Emitting Diodes

  • Chen, Wei-Sheng;Chung, Yi-Fan;Tien, Ko-Wei
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Recovery of gallium and indium from waste light emitting diodes has been emphasized gradually owing to high content of gallium and indium. This study was established the recovery of gallium (Ga3+) and indium (In3+) from waste gallium nitride was contained in waste light-emitting diodes. The procedure was divided into the following steps; characteristic analysis, alkaline roasting, and leaching. In characteristic analysis part, the results were used as a theoretical basis for the acid leaching part, and the chemical composition of waste light emitting diodes is 70.32% Ga, 5.31% Si, 2.27% Al and 2.07% In. Secondly, with reduction of non-metallic components by alkaline roasting, gallium nitride was reacted into sodium gallium oxide, in this section, the optimal condition of alkaline roasting is that the furnace was soaked at 900℃ for 3 hours with mixing Na2CO3. Next, leaching of waste light emitting diodes was extremely important in the process of recovery of gallium and indium. The result of leaching efficiency was investigated on the optimal condition accounting for the acid agent, concentration of acid, the ratio of liquid and solid, and reaction time. The optimal condition of leaching procedures was carried out for 2.0M of HCl liquid-solid mass ratio of 30 ml/g in 32minutes at 25℃ and about 96.88% Ga and 96.61% In were leached.

A Study on the Removing of $SiO_2$ in Ferromanganese Dust by Fritting Method (Fritting법에 의한 페로망간 분진내 $SiO_2$제거에 관한 연구)

  • 임종호;이승원
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • Ferromanganese dust is an oxide substance of Mn. If imprities are removed and oxidation degree is controlled, the dust can be recycled for soft ferrite materials. The ferromanganese dust contained about 7 kinds of impurities, expecially about 9000 ppm of $SiO_2$ contents of the ferromanganese dust from 9000 ppm to under 500 ppm by fritting method. The $SiO_2$ in ferromanganese dust can be converted into water soluble compounds by alkali fritting and removed by water leaching. KOH and NaOH were used. The most effective conditions to get rid of $SiO_2$ from the dust are that the weight ratio of alkali to ferromanganese dust is 1.75 and fritting is run at $550^{\circ}C$ for 1 hour.

  • PDF

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF