• 제목/요약/키워드: 알루미늄 합금주조

검색결과 165건 처리시간 0.024초

저압함침법에 의한 FeCrSi/AC8A 복합재료의 제조와 마모특성 평가 (Fabrication and Wear Property Evaluation for FeCrSi/AC8A Composite by Low-pressure Infiltration)

  • 송태훈;이현준;최용범;김성진;박원조
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.106-111
    • /
    • 2008
  • In this paper, study about property evaluation for the metal matrix composites fabricated by low pressure infiltration process. Aluminum alloy composite which is reinforced by Metal fiber preform was fabricated by low pressure casting process. Infiltration condition was changed the pressure infiltration time of 1 sec, 2 sec and 5 sec under a constant pressure of 0.4 MPa. The molten alloy completely infiltrated the FeCrSi metal perform regardless of the increase in the pressure acceleration time. The the porosity in the FeCrSi/AC8A composite was investigated. The porosity was reduced as the pressure acceleration time as shorter. The FeCrSi/AC8A composite was investigated the wear test for to know the relationship between Porosity and wear resistance. FeCrSi/AC8A composite at pressure acceleration time of 1sec is shown excellent wear resistance.

H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동 (Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution)

  • 우상현;손영진;이병우
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

주조용 알루미늄합금의 $Al_{2}O_{3}-40%TiO_{2}$ 용사층에 대한 마멸특성 평가 (Evaluation of wear chracteristics for $Al_{2}O_{3}-40%TiO_{2}$ sprayed on casting aluminum alloy)

  • 채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.183-190
    • /
    • 1997
  • The wear behaviors of $Al_2O_3-40%TiO_2$ deposited on casting aluminum alloy(ASTM A356) by plasma spray against SiC ball have been investigated experimentally. Friction and wear tests are carried out at room temperature. The friction coefficient of $Al_2O_3-40%TiO_2$ coating is lower than that of pure $Al_2O_3$ coating(APS). It is found that low friction correspond to low wear and high friction to high wear in the experimental result. The thickness of $Al_2O_3-40%TiO_2$ coatings indicated the existence of the optimal coating thickness. It is found that a voids and porosities of coating surface result in the crack generated. As the tensile stresses in coating increased with the increased friction coefficient. The columnar grain of coating will be fractured to achieve the critical stress. It is found that the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tensile and compressire under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. This crack propagation above interface is observed in SEM.

  • PDF

주조용 알루미늄 합금의 $Al_2O_3-40%TiO_2$ 용사층에 대한 마멸특성 평가 (Evaluation of Wear Chracteristics for $Al_2O_3-40%TiO_2$Sprayed on Casted Aluminum Alloy)

  • 채영훈;김석삼
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.39-45
    • /
    • 1999
  • The wear behavior of $Al_2$O$_3$-40%TiO$_2$deposited on casted aluminum alloy (ASTM A356) by APS (Air Plasma Spray) against SiC ball has been investigated in this work. Wear tests were carried out at room temperature. The friction coefficient of $Al_2$O$_3$-40%TiO$_2$coating is lower than that of pure $Al_2$O$_3$coating(APS). $Al_2$O$_3$-40%TiO$_2$coating indicated the existence of the optimal coating thickness. It is found that voids and pores of coating surface resulted in the generation of cracks, and the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tension and compression under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. The crack propagation above interface is observed in SEM.

세라믹 코팅이 기계 주조용 알루미늄합금(7075 T6)의 마찰ㆍ마모특성에 미치는 영향에 관한 연구 (A Study on the Influence of Ceramic Coating on Characteristics of Friction and Abrasion of Aluminum Alloy(7075 T6) Used in Mechanical Casting)

  • 류성기;정광조;로룡
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.14-21
    • /
    • 2003
  • This study deals with the influence of ceramic coating on characteristics of friction and abrasion of aluminum allot(7075 T6) used in mechanical casting. In this research, frictional wear characteristic of ceramic coating materials such as $A1_2O_3$, $Si_3N_4$, SiC was investigated using aluminum alloy(7075 T6) and stainless 403 cast iron under room temperature and normal air pressure. The coating layer was observed using SEM. The conclusions are as follows: 1) Friction coefficients of $A1_2O_3$, SiC and $Si_3N_4$ are obtained 0.63 0.56 and 0.54 respectively. 2) Abrasion resistance of stainless 403 cast iron with $Si_3N_4$ is the best among the ceramic coating materials. 3) Abrasion mechanism of aluminum alloy(7075 T6) coaled with ceramic material and stainless 403 cast iron is caused by brittle fracture. 4) Coating the ceramic material on the aluminum alloy(7075 T6) can effectively increase the antiwear, impact properties, and corrosion resistance.

자동차 부품 소재 개발에 따른 캐스팅 과정의 부품 내부온도 거동에 관한 연구 (A Study on the Inner Temperature Behaviors in the Casting Process for the Development of the Automatic Parts)

  • 차용훈;성백섭;장훈;김미애;김정대;김선진;김덕중;이연신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.279-284
    • /
    • 2005
  • The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. In this thesis, the computer simulation analyzed the flow of molten metal. The quantitative analyses which proposed the effective mold design was executed Flow patterns of 0.15-0.16m/s molten metal in 15 mm thin plate casting were investigated in order to optimize die-casting process. As increasing ingate velocity in thin plate casting, cold shot was decreased. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

예열온도조건에 따른 알루미늄 합금 주조재의 응고특성에 관한 연구 (A Study on Solidification Characteristics of Aluminum Alloy Casting Material by Pre-heated Temperature Conditions)

  • 윤천한;윤희성;오율권
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.7-12
    • /
    • 2012
  • In this study, the solidification characteristics inside the AC7A casting material was analyzed using the numerical analysis method and was verified using the experimental method by the pre-heated temperature conditions of metal casting device. For the numerical analysis, "COMSOL Multiphysics", the commercial code based on the finite element analysis(FEA), was used in order to predict the thermal deformation of the AC7A casting material including temperature, displacement and stress distribution. Also, in order to verify the results calculated by the numerical analysis, the experiment for temperature measurement inside the AC7A casting material was performed using the K-type thermocouple under the same condition of numerical analysis method. In the numerical results, thermal deformation inside AC7A casting material was well-suited for manufacturing products when the pre-heated temperatures of the metal casting device was $250^{\circ}C$. When the results of the temperature distribution were experimentally measured and were compared with those of the numerical result, it appeared that there was some temperature difference because of the latent heat by phase change heat transfer. However, the result of cooling temperature and patterns were almost similar except for the latent heat interval. The solidification characteristics was closely related to the temperature difference between the surface and inside of the casting.

주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델 (Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models)

  • 고승기
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석 (Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys)

  • 강충길;임미동
    • 소성∙가공
    • /
    • 제6권3호
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향 (Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy)

  • 이영재;강원국;어광준;조규상;이기안
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.